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Control of transient chaos in tent maps near crisis. II. Periodic orbit targeting

C. M. Place and D. K. Arrowsmith
Mathematics Research Centre, Queen Mary and Westfield College, University of London, London E1 4NS, United Kingdo

~Received 23 August 1999!

Recent work on a symbolic approach to the calculation of probability distributions arising in the application
of the Ott-Grebogi-Yorke strategy to transiently chaotic tent maps is extended to the case of control to a
nontrivial periodic orbit. Closed forms are derived for the probability of control being achieved and the average
number of iterations to control when it occurs. Both single-component and multiple-component targeting are
considered, and illustrative examples of the results obtained are presented.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

In earlier work@1# the problem of using the Ott-Grebog
Yorke ~OGY! strategy to control the orbits of a transient
chaotic tent map to its nontrivial fixed point was consider
A numerical experiment was envisaged in which init
points were chosen at random~i.e., according to a uniform
distribution! in @0,1# and the probability that the OGY targe
interval was reached in less than or equal to a chosen num
of iterations was obtained. A symbolic dynamic approa
was adopted that allowed the probability distributions as
ciated with such an experiment to be obtained in closed fo
and the results were interpreted in relation to the work of´l
@2#.

In order to extend the symbolic analysis used in@1# to the
case of OGY control to nontrivial periodic orbits, it is im
portant to be clear about the details of the numerical exp
ment that is to be treated. For example, control to a perioq
orbit of a mapT:R→R, could be achieved by taking a targ
interval around one of the fixed points of theqth power of
the map and generating the orbits of randomly chosen in
points underTq until the target interval is reached. Such
experiment involves different probability distributions fro
one in which a target interval is chosen around the sa
period-q point but the iterates of initial points under the m
T itself are considered~cf. @3,4#!. Since Tq is commonly
obtained by makingq iterations ofT, it would seem to be
perverse to check if the target interval had been reached
at everyqth iterate. However, even if checks are made
each iterate, the procedure relies upon reaching the peri
orbit via a ‘‘single-component’’ target. From a symbol
standpoint, such an experiment is similar to the fixed po
problem~see@1#! in that only a single binary string is to b
avoided during preimage construction.

The symbolic approach lends itself naturally to deali
with an alternative experiment in which the target is taken
be a union ofq disjoint intervals, each of which contains on
and only one, of the periodic points that make up t
period-q orbit, i.e., the target consists ofq disjoint compo-
nents. In such a ‘‘multiple-component’’ experiment, th
period-q orbit can be reached throughq disjoint target com-
ponents each containing one of its periodic points. The
merical experiment considered takes a randomly chosen
tial point in @0,1# and obtains the probability that its orb
first reachesanyone of theq components of the target union
PRE 611063-651X/2000/61~2!/1369~13!/$15.00
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In symbolic terms, the single code block describing the t
get interval for the fixed point in@1# is replaced byq code
blocks representing theq components of the target union fo
the periodic orbit. In order to ensure that only first entri
into any component are counted, it is necessary to av
occurrences ofq code blocks in the preimage formation pr
cess.

As in the fixed point case, the symbolic approach pla
some limitations on the choice of target intervals. In partic
lar, for multiple-component targets, the requirement t
each component of the target union contains one and o
one period-q point imposes stronger constraints than in t
fixed point case. For example, if a minimum of one symbo
period of the orbit is used to define each target interval th
the maximum length of each component of the target un
is 22q . This constraint also applies to the single-compon
target if the periodic orbit under consideration is to be clea
identified or if comparisons of the distributions for theq
possible choices of single target are to be made.

It should be noted that the present discussion is conce
only with the probability that iterates of the map itself fir
enter the chosen target~i.e., stage 1 of the OGY contro
procedure!. When the orbit is inside the target, the control
applied~stage 2 of the OGY method! so as to ensure that th
orbit of the controlled system remains close to the perioq
orbit. The latter phase of the control process is not cons
ered in this paper. It is assumed that once the target has
entered control can be maintained.

II. NUMBERS OF FIRST-ENTRY PREIMAGES

The results for the single-component target are contain
as a special case, within the analysis of the multip
component experiment and, therefore, the latter is prese
first.

A. Multiple-component targeting

The numbers of first-entry preimages of each compon
of the target union for a period-q orbit can be obtained by
using combinatorial arguments similar to those discussed
Odlyzko @5# and developed in greater depth by Guibas a
Odlyzko @6#. The latter reference contains an intriguing co
lection of applications of the same type of string countin
1369 ©2000 The American Physical Society
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TABLE I. Decomposition of the$Ki5BAi uB counts forf Lq
(m)% according to the position of the possib

occurrence of elements ofLq . The indexj appearing in this table can take any of the values 1, . . . ,q.

Type of Ki No. of type Condition for convergence s

b1b2 . . . bmAi hLq
( j ,m1r ) a1

( i )a2
( i ) . . . ar

( i )5a1
( j )a2

( j ) . . . ar
( j ) 0

b1b2 . . . bm21Ajar
( i ) hLq

( j ,m1r 21) a1
( i )a2

( i ) . . . ar 21
( i ) 5a2

( j )a3
( j ) . . . ar

( j ) 1
b1b2 . . . bm22Ajar 21

( i ) ar
( i ) hLq

( j ,m1r 22) a1
( i )a2

( i ) . . . ar 22
( i ) 5a3

( j )a4
( j ) . . . ar

( j ) 2
A A A A
b1b2 . . . bm2r 11Aja2

( i ) . . . ar
( i ) hLq

( j ,m11) a1
( i )5ar

( j ) r 21
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from coin-tossing games, through clustering problems,
prefix-synchronized codes and pattern matching algorith

1. The string counting problem

Let Ai5(.a1
( i )a2

( i ) . . . ar
( i )), i 51, . . . ,q, be the code

blocks representing theq components of the target union fo
the period-q orbit under consideration, and letLq5$Ai u i
51, . . . ,q% be the list of representatives of the target unio
In order to construct first-entry preimage codes for the tar
union, each element ofLq must be considered in turn. Reca
that, since the tent mapTn is conjugate to a leftshift on
infinite binary sequences, the preimages of such an elem
are constructed by repeatedly adding 0 or 1 to its left-h
end and counting only those resulting codes for which
element ofLq appears in the leftmostr positions. It follows
that, for a particular elementAi of Lq , first-entry preimage
codes of orderk are binary strings of lengthm5k1r , which
haveAi at their right-hand end but do not contain any e
ment of Lq , as a substring ofr adjacent characters, else
where in them. Since the elements ofLq are distinct, so are
their preimage codes, and therefore the set of order-k, first-
entry preimage codes for the target union is the disjo
union of those for the individual elements ofLq .

Define ~a! f Lq
(m) to be the number of binary strings o

length m that do not contain any of the elements ofLq as
substrings ofr adjacent characters within them; and~b!
hLq

( j ,m) to be the number of binary strings of lengthm with

Aj at their right-hand end but with noAi , i 51, . . . ,q, oc-
curring as a substring ofr adjacent characters elsewhere
them.

Let B5(.b1b2 . . . bm) be counted forf Lq
(m) and ob-

serve that the stringb1b2 . . . bmb, whereb is either 0 or 1, is
a string of lengthm11 that has one~and only one! of the
following properties:~0! it contains none of the elements o
Lq ; ~1! it containsA1 with A15bm2r 12 . . . bmb; ~2! it con-
tainsA2 with A25bm2r 12 . . . bmb; . . . ; ~q! it containsA1
with Aq5bm2r 12 . . . bmb. The strings appearing in prope
ties (1), . . . ,(q) have an element ofLq at their right-hand
end but there are no other occurrences of any of these
strings elsewhere in the concatenationBb. It follows that

2 f Lq
~m!5 f Lq

~m11!1(
i 51

q

hLq
~ i ,m11!. ~2.1!

Now consider the concatenationKi5BAi , for any choice of
i 51, . . . ,q. Clearly, there are preciselyf Lq

(m) such concat-
enations for eachi, because there is one for every possibleB.
However, the number of concatenationsKi can be counted in
o
s.

.
et

nt
d
o

-

t

b-

another way. AlthoughB does not contain any element ofLq
as a substring,Ki can contain such substrings as shown in
first column of Table I.

Every Ki must belong to one, and only one, of the typ
specified and, consequently, the total number ofKi is the
sum of the numbers of each type ofKi that occurs. The
number of each type ofKi is given in the second column o
Table I. However, a particular type ofKi occurs if and only
if the condition given in the third column of the table
satisfied. These conditions can be represented by indic
functionsci j (s) defined, fori , j 51, . . . ,q, by

ci j ~s!5H 1 if a1
( i )a2

( i ) . . . ar 2s
( i ) 5as11

( i ) as12
( i ) . . . ar

( i )

0 otherwise,
~2.2!

with s50,1, . . . ,r 21. It follows that, for eachi 51, . . . ,q,

f Lq
~m!5(

j 51

q

(
s50

r 21

ci j ~s!hLq
~ j ,m1r 2s!. ~2.3!

2. Generating functions

Generating functions for the numbers of binary strings
given length that have the above properties can be obta
as follows. Multiplication of Eqs.~2.1! and~2.3! by zm, and
summation overm from zero to infinity, can be shown to
yield the following relationships between the generati
functionsFLq

(z) andHLq

( j )(z) for the numbersf Lq
(m) and

hLq
( j ,m), j 51, . . . ,q, respectively. Equation~2.1! gives

2FLq
~z!5z21

„FLq
~z!21…1z21(

i 51

q

HLq

( i )~z!, ~2.4!

and, for i 51, . . . ,q, Eq. ~2.3! leads to

FLq
~z!5z2r (

j 51

q

Ci j ~z!HLq

( j )~z!, ~2.5!

where the coefficient

Ci j ~z!5(
s50

r 21

ci j ~s!zs ~2.6!

is the correlation polynomial for the stringsAi and Aj ~cf.
Odlyzko @5#!. Elimination ofFLq

(z) from Eq. ~2.4! by using
Eq. ~2.5! results in a set ofq linear equations, with polyno-
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mial coefficients, for the unknown generating functio
HLq

( j )(z), j 51, . . . ,q. More precisely, fori 51, . . . ,q,

(
j 51

q

p i j ~z!HLq

( j )~z!5zr , ~2.7!

where

p i j ~z!5~122z!Ci j ~z!1zr . ~2.8!

These equations have a unique solution provided that
coefficient matrix is nonsingular over the field of ration
functions.

Observe that the numbershLq
( j ,m) obtained from the ex-

pansion of the rational functionHLq

( j )(z) are zero form

,r , for any j ~there are no strings satisfying the definin
property of length less thanr! and the number of first-entry
preimages ofAj of order k is given byhLq

( j ,k1r ). More-
over, the total number of order-k, first-entry preimages for
the period-q orbit contained in the target union is given by

Nk
(r )~Lq!5(

j 51

q

hLq
~ j ,k1r !. ~2.9!

These numbers can be obtained directly from a genera
function HLq

(z) that is the sum overj of the generating

functionsHLq

( j )(z).

B. Single-component targeting

Corresponding results to those given in Sec. II A can
obtained for the single-component target by replacing the
Lq in the multiple-component analysis by the particular co
block Ai representing the single target interval. Of cour
any of theq members of the listLq can be chosen for this
purpose. Apart from its effect on the definitions of the bina
strings involved in the first-entry preimage codes, t
change simply removes the summations over the elemen
Lq in the key results~2.1! and ~2.3!. These equations ar
replaced by

2 f Ai
~m!5 f Ai

~m11!1gAi
~m11! ~2.10!

and

f Ai
~m!5(

s50

r 21

cii ~s!gAi
~m1r 2s!, ~2.11!

respectively. In Eqs.~2.10! and ~2.11! g has been used in
stead ofh to emphasize that the strings involved must av
only the single code blockAi , and not the whole listLq . It
is therefore appropriate to use the same notation as was
in @1# for the fixed point case. Indeed, the fixed point pro
lem corresponds to Eq.~2.11! with cii (s)51, for s
50,1, . . . ,r 21. Multiplication of Eqs.~2.10! and~2.11! by
zm, and summation overm from zero to infinity, can be
shown to yield

~122z!FAi
~z!1GAi

~z!51 ~2.12!
e

g

e
st
e
,

s
of

ed
-

and

FAi
~z!5z2rCAi

~z!GAi
~z!, ~2.13!

where

CAi
~z!5(

s50

r 21

cii ~s!zs. ~2.14!

HereFAi
(z) andGAi

(z) are the generating functions for th

numbersf Ai
(m) andgAi

(m), respectively, andCAi
(z) is the

correlation polynomial for the target stringAi with itself ~see
Odlyzko @5#!. Substitution of Eq.~2.13! into Eq.~2.12! gives

GAi
~z!5 (

m50

`

gAi
~m!zm5

zr

$~122z!CAi
~z!1zr%

.

~2.15!

The numbersgAi
(m) are zero form,r andgAi

(r )51 ~there

is precisely one string of lengthr with Ai at its right-hand
end and none of length less thanr ) and the number of first-
entry preimages ofAi of orderk, Nk

(r )(Ai), is gAi
(k1r ).

III. CALCULATION OF PROBABILITIES

A. Successful control for a multiple-component target

For the hypothetical numerical experiment described
Sec. I, the probability of achieving control to the periodq
orbit is given by the total length of the first-entry preimag
contributing to the particular event considered. For exam
control in less than or equal ton iterations of the map occur
with probability pLq

(n,r ;n) given by

(
k50

n

Nk
(r )~Lq!~2n!2(k1r )5 (

k50

n

(
j 51

q

hLq
~ j ,k1r !~2n!2(k1r )

5 (
m50

n

(
j 51

q

hLq
~ j ,m!~2n!2m. ~3.1!

This follows because theq components of the target unio
all have length (2n)2r and the process of taking preimag
reduces the lengths of these components by a factor of 2n for
each unit increase in order. Recall thathLq

( j ,m)50 for m

,r and j 51, . . . ,q. In the limit of arbitrarily largen, Eq.
~3.1! gives the probabilitypLq

(n,r ) that control is ultimately

achieved with the target unionLq . The result is

pLq
~n,r !5 lim

n→`

@pLq
~n,r ;n!#5(

j 51

q

HLq

( j )
„~2n!21

…

5HLq
„~2n!21

…. ~3.2!

A valuable check on the expressions for the generating fu
tions HLq

( j )(z), obtained by solution of Eq.~2.7! is that

pLq
(1,r )51. This must be the case because, forn51, the

orbits of all points remain in@0,1# indefinitely and, with
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probability 1, the orbit of any choice of initial point wil
ultimately reach one of the components of the target un
~cf. @1#, Sec. IV A!.

B. Failure of control for a multiple-component target

The binary strings that count forf Lq
(m) are of lengthm

and do not contain any element of the setLq . Whenn.1,
each such string represents a subinterval of@0,1#, of length
(2n)2m, containing points with orbits that do not encount
any member of the target union inm iterations. Such a sub
interval contains points of two distinct types. Each subint
val can be disjointly decomposed into a preimage@of length
(12n21)(2n)2m# of the escape intervalI E made up of
points @of type ~i!# whose orbits leave@0,1# in m11 itera-
tions without being controlled; and the complement in t
subinterval@of length n21(2n)2m] of this preimage ofI E ,
made up of points@of type ~ii !# whose fate is not decided i
n iterations. It follows that

p̄Lq
~n,r ;n!5~12n21! (

m50

n

f Lq
~m!~2n!2m ~3.3!

is the probability that the orbit of a randomly chosen init
point will enterI E , without passing through the target unio
in less than or equal ton iterations ofTn . Thus Eq.~3.3!
gives the probability of selecting an initial point@of type ~i!#
for which it is clear aftern iterations that control will never
be achieved. In the limit in whichn becomes arbitrarily
large, the contribution from points of type~ii ! must tend to
zero. This is the case because, forn.1, almost all~in the
sense of Lebesgue measure! initial points have orbits tha
ultimately leave@0,1# and, for sufficiently largen, the fate
~i.e., whether its orbit is controlled or not! of almost every
point must be determined. It can therefore be concluded

p̄Lq
~n,r !5~12n21!FLq

„~2n!21
… ~3.4!

is the probability that the orbit of a randomly chosen init
point will never be controlled. Moreover, the interpretati
of the generating functions given in Eqs.~3.2! and ~3.4! is
confirmed by Eq.~2.4!, which can be written in the form

HLq
„~2n!21

…1~12n21!FLq
„~2n!21

…51, ~3.5!

so that pLq
(n,r )1 p̄Lq

(n,r ) is equal to unity, as required

Observe thatp̄Lq
(1,r )50, so that control is always achieve

when n51. For finite n, there is a nonzero probabilit
uLq

(n,r ;n) that the fate of the initial point is undecided
less than or equal ton iterations, and then

pLq
~n,r ;n!1uLq

~n,r ;n!1 p̄Lq
~n,r ;n!51. ~3.6!

C. Outcomes for a single-component target

Similar arguments can be used to derive analogous p
abilities of success or failure of control for the singl
component target experiment. The probabilities for succe
ful control corresponding to Eqs.~3.1! and ~3.2! are
n

r

-

l

at

l

b-

s-

pAi
~n,r ;n!5 (

k50

n

Nk
(r )~Ai !~2n!2(k1r )

5 (
k50

n

gAi
~k1r !~2n!2(k1r )

5 (
m50

n

gAi
~m!~2n!2m ~3.7!

and

pAi
~n,r !5 lim

n→`

@pAi
~n,r ;n!#5GAi

„~2n!21
…, ~3.8!

respectively; while

p̄Ai
~n,r ;n!5~12n21! (

m50

n

f Ai
~m!~2n!2m, ~3.9!

p̄Ai
~n,r !5~12n21!FAi

„~2n!21
…, ~3.10!

and

GAi
„~2n!21

…1~12n21!FAi
„~2n!21

…51 ~3.11!

replace Eqs.~3.3!, ~3.4!, and ~3.5!. Here Eq.~3.11! follows
directly from Eq.~2.12! with z5(2n)21 . The analogous re-
sult to Eq. ~3.6! simply hasAi rather thanLq labeling the
probabilities involved.

IV. RECURRENCE RELATIONS

The generating functions obtained in Sec.II provide
practical means of calculating the limiting probabilities, d
fined in Sec. III, as functions ofn and r. However, the ex-
pansion of the appropriate generating function in powersz
does not lead to a particularly efficient algorithm for obta
ing the numbers of first-entry preimages needed to comp
the probability of success or failure of control in less than
equal to a finite numbern of time steps. Such computation
are best performed with the aid of the corresponding rec
rence relation. These relations are contained in the fun
mental equations:~2.1! and~2.3! for the multiple-component
target and~2.10! and~2.11! for the single-component exper
ment.

A. Multiple-component target

Equation~2.3! gives, for eachi 51, . . . ,q,

f Lq
~k11!5(

j 51

q H ci j ~0!hLq
~ j ,k111r !

1(
s51

r 21

ci j ~s!hLq
„j ,k1r 2~s21!…J

5hLq
~ i ,k111r !

1(
j 51

q

(
s50

r 22

ci j ~s11!hLq
~ j ,k1r 2s!, ~4.1!
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sinceci j (0)5d i j , the Kroneckerd function. Substitution of
Eq. ~4.1! into Eq. ~2.1! ~with m replaced byk! then yields

hLq
~ i ,k1r 11!5(

j 51

q H 2(
s50

r 21

ci j ~s!hLq
~ j ,k1r 2s!

2(
s50

r 22

ci j ~s11!hLq
~ j ,k1r 2s!

2hLq
~ j ,k11!J

5(
j 51

q

(
s50

r 21

@2ci j ~s!2ci j ~s11!#

3hLq
~ j ,k1r 2s!, ~4.2!

whereci j (r )51. Equation~4.2!, with m5k1r , provides an
expression forhLq

( j ,m11) in terms of hLq
( j ,l ) with j

51, . . . ,q and l 5m,m21, . . . ,m2r 11. Given that
hLq

( j ,m)50 for m,r andhLq
( j ,r )51, for j 51, . . . ,q, Eq.

~4.2! allows hLq
( i ,m), i 51, . . . ,q, to be generated form

.r provided that the correlation coefficients are know
Note that the integer variablek in Eq. ~4.2! corresponds to
the order of the preimage of the target component underTn .

B. Single-component target

When the corresponding arguments are applied to E
~2.10! and ~2.11!, the result is

gAi
~m11!5(

s50

r 21

@2cii ~s!2cii ~s11!#gAi
~m2s!,

~4.3!

where cii (r )51, gAi
(r )51, and gAi

(m)50, for m

51, . . . ,r 21. For a particular choice of the code blockAi ,
the correlation coefficients can be calculated and Eq.~4.3!
allows the numbers of first-entry preimages of orderk
5m2r to be obtained for the corresponding target interv

C. Correlations

In comparing Eqs.~4.2! and ~4.3!, it is important to note
that the latter contains no cross correlations: only the co
lation coefficients of the target string with itself are involve
On the other hand, Eq.~4.2! shows that, for the multiple-
component target, the numbers of first-entry preimages
each member of the target union involve the correlation
efficients of its code block with every member of the listLq .
It follows that, for the single-component target, the rec
rence relation involves only numbers of first-entry preimag
of the target interval itself. In contrast, the recurrence re
tion for a particular component of the multiple-compone
target additionally involves such numbers for other com
nents of the target union. It is perhaps worth noting that
~4.2! only provides a stepping stone to the real objective
the multiple-component experiment, namely,Nk

(r )(Lq)
5( j 51

q hLq
( j ,k1r ), the number of order-k, first-entry preim-

ages to the target union as a whole.
.

s.

l.

e-
.

of
-

-
s
-
t
-
.

n

D. Probability distributions for finite numbers of iterations

The recurrence relations developed above allow calc
tion of probabilities such aspLq

(n,r ;n), uLq
(n,r ;n), and

p̄Lq
(n,r ;n) for chosen values ofn, without recourse to the

expansion of the rational formHLq
(x) to obtain the numbers

Nk
(r )(Lq) for k50,1, . . . ,n. Even for the single-componen

target, where the generating functions are easily obtaine
is more convenient to computepAi

(n,r ;n), uAi
(n,r ;n), and

p̄Ai
(n,r ;n) from the recurrence relation.

V. AVERAGE NUMBER OF ITERATIONS TO CONTROL

A. Multiple-component experiments

In @1#, the generating functionĜr(z) for the numbers of
first-entry preimages of the target interval was used to ob
the average number of iterations for control to be achiev
given that the orbit of the initial point was controlled. I
order to carry out the equivalent derivation for a periodq
orbit with multiple-component targeting, it is convenient
extract a corresponding quantity,ĤLq

(z), from the rational

generating functionHLq
(z) defined in Eq.~3.2!. Recall that

hLq
( j ,m)50, for m50,1, . . . ,r 21, because there are no b

nary strings of length less thanr digits that contain any ele
ment ofLq . Thus

HLq
~z!5 (

m50

` F (
j 51

q

hLq
~ j ,m!Gzm5zrĤLq

~z!, ~5.1!

where

ĤLq
~z!5z2r (

m5r

` F (
j 51

q

hLq
~ j ,m!Gzm

5 (
k50

`

ntyF (
j 51

q

hLq
~ j ,k1r !Gzk

5 (
k50

`

Nk
(r )~Lq!zk. ~5.2!

A similar argument to that used in@1# can be applied to Eq
~5.2! to show that the average number of iterations to con
is given by

tLq
~n,r !5F zĤLq

8 ~z!

ĤLq
~z!

G
z5(2n)21

. ~5.3!

Equation ~5.3! provides the limiting value of the averag
number of iterations to control, when control occurs, th
should be obtained from experiments that admit arbitra
large numbers of iterations for each member of an arbitra
large sample of initial points. The recurrence relations, giv
in Sec. IV, allow the more practical estimates,
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tLq
~n,r ;n!5

(
k51

n

kNk
(r )~Lq!~2n!2(k1r )

(
k50

n

Nk
(r )~Lq!~2n!2(k1r )

, ~5.4!

to be computed for any chosenn. These quantities give valu
able information about how quickly the large-n limit is ap-
proached for different choices ofn and r.

B. Single-component experiments

In such an experiment, the calculation of the avera
number of iterations to control, given that control tak
place, is formally the same as that presented in@1# for the
fixed point target, except that the recurrence relation and
generating function are determined by the target inter
code blockAi rather than (.11 . . . 1)r . The lack of cross
correlations means that the analysis is considerably sim
than the multiple-component case using the same valuer.
It follows that it is easier to study theq andr dependence o
t using this kind of experiment. The equivalent results
Eqs.~5.1!–~5.4!, for the single-component target, can be o
tained by making the following notational changes:H→G,
Lq→Ai , h→g, ( j ,m)→(m), and (j ,k1r )→(k1r ), and
( j 51

q no longer appears.

VI. DISCUSSION—SINGLE-COMPONENT TARGETS

The purpose of this section is to highlight some of t
features of control to a nontrivial periodic orbit that follo
from the above analysis.

A. Some overall limits on the probability of successful control

The analysis of the single-component experiment fo
nontrivial period-q orbit is formally similar to the treatmen
of the fixed point problem, but differs from it in the correla
tion coefficients that are involved. In the fixed point case,
pattern of these coefficients with increasingr is particularly
simple because they are all equal to unity~see Sec. II B!.
When the code block representing the target interval is
longer simply (.11 . . . 1)r , less trivial patterns of correlation
coefficients emerge. However, Eq.~2.15! shows that the gen
erating function does not depend strongly on the variation
correlation coefficients that may arise.

Recall that, for a given value ofr, the correlation polyno-
mial is of degree at most (r 21) and has coefficients that ar
either 0 or 1. Moreover, since only correlations of the tar
string with itself are involved in the single-component e
periment, the coefficient ofz0 must be unity. It follows that
the correlation polynomial for any target block of lengthr
lies between the extreme cases

C0~z![1 andC1~z!511z1•••1zr 215~12zr !/~12z!.
~6.1!

Consequently, the generating function given in Eq.~2.15!
has upper and lower limits of
e

e
l

er

-

a

e

o

in

t

GUL
(r ) ~z!5zr$~122z!C0~z!1zr%21 and

~6.2!

GLL
(r )5zr$~122z!C1~z!1zr%21.

It follows that the probability of successful control satisfie

GLL
(r )
„~2n!21

…<pAi
~n,r !<GUL

(r )
„~2n!21

…, ~6.3!

for any target stringAi of length r.
The limits of the probability of successful control give

by Eq.~6.3! are plotted in Fig. 1~a! as a function of the targe
string lengthr for n51.000 01. The difference

GUL
(r )

„~2n!21
…2GLL

(r )
„~2n!21

…

5F zr 11~122z!~12zr 21!

~122z1zr !~122z1zr 11!
G

z5(2n)21

~6.4!

is a measure of the spread of possible values for the p
ability of control taking place. In general, as illustrated
Fig. 1~b!, this spread passes through a well-defined ma
mum for r 5r c , given by

FIG. 1. Illustration of ther dependence of the limits to th
probability of successful control forz51/(2n) with n51.000 01:
~a! plots of the limits given by Eq.~6.3!; ~b! the spread of possible
values given by Eq.~6.4!; ~c! the spread of possible values e
pressed as a percentage of the lower limit~LL !.
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r c5 d11F lnH ~122z!~12z!

~122z1z3! J Y ln~z!G
z5(2n)21

e,
~6.5!

whered* e is the smallest integer greater than or equal to
It would be wrong to conclude that correlation variatio

have a significant effect onpAi
(n,r ) only for values ofr

lying within the peak in the spread of its possible values. F
values of r lying below the peak, both limits are close
unity and the spread is genuinely of little significance; b
for values ofr above the peak both limits are near to ze
and the spread of possible values can represent very sig
cant relative differences in the probability of successful c
trol. For example, with (2n)215221(12d) and 22r!d
!1, the limits given in Eq.~6.3! yield

1

2

~2n!2r

d
,pAi

~n,r !<
~2n!2r

d
. ~6.6!

Ideally, in numerical experiments, it is advisable to arran
for the probability of control to be close to unity, but if low
success rates are unavoidable, then a possible factor of 2
may be available from the choice of target string could
invaluable. Fig. 1~c! shows the result of numerical evaluatio
of the relative spread obtained from Eqs.~6.2! and ~6.4! for
the case whenn51.000 01.

Equation~6.4! also provides information about how th
correlation spread changes as the crisis is approached.n
tends to unity, it can be shown that the peak in the sprea
values ofpAi

(n,r ) essentially maintains its height and wid
while the maximum given by Eq.~6.5! moves monotonically
to infinity. In this way, the range of values ofr for which
pAi

(n,r ) is close to unity~and the relative spread is close

zero! expands untilpAi
(1,r )[1 for anyAi @cf. Eq.~6.2! with

z5 1
2 #.

B. Target interval dependence within an orbit

In a single-component experiment, in which the length
the target interval is fixed, there areq possible candidates fo
the target interval. It is clear that the numbers of preima
contributing to control occurring in exactlyk iterations is
determined by the correlation coefficients of the target c
block and, therefore, these numbers can vary from one ta
interval to another. How does the probability of success
control depend on which of these intervals is chosen?

Consider the period-q orbit represented by the indefinit
repetition of the string 00 . . . 01~of lengthq! and each of its
q21 distinct cyclic permutations. The interval represen
r

t

ifi-
-

e

hat
e

s
of

f

s

e
et
l

d

by the q-block Aw5(.0 . . . 010 . . . 0)q , where w is the
number of zeros to theright of the digit ‘1’, contains one,
and only one, of the period-q points. It is therefore a possibl
choice of target interval in a single-component experime
Equation~2.15! can be used to obtain the generating functi
GAw

(z) for eachw50,1, . . . ,q21, and the corresponding

probabilitiespAw
(n,q)5GAw

„(2n)21
… compared for differ-

ent values ofw.
Each generating function is determined by the correlat

coefficients ofAw and these indicator functions are invaria
under reversal of the binary string defining the code blo
Thus the correlation coefficients forAw are the same as thos
of its reversalĀw5Aq212w , so thatGAw

(z)5GAq212w
(z).

It follows that it is sufficient to obtainGAi
(z) for w

50,1, . . . ,w* , where

w* 5H q/221 if q is even

~q21!/2 if q is odd.
~6.7!

Equation~2.15!, together with Eqs.~2.14! and ~2.2! ~with i
5 j ), gives

FIG. 2. Illustration of the intraorbit variation of the success ra
of OGY control with the choice of target interval in a single
component experiment. Graphs show the values of the probab
of successful control,pAw

(n,q), as e5n21 approaches zero from
above. Each plot corresponds to one of the possible choices oAw

in Eq. ~6.8! whenq53, 4, 5, and 6. Recall that the probability o
success is invariant under string reversal, i.e.,pAw

(n,q)
5pAq212w

(n,q).
GAw
~z!5GAq211w

~z!5H zq$122z1zq%21 for w50

zqH ~122z!S 11(
s51

w

zq2sD 1zqJ 21

for w51, . . . ,w* .
~6.8!
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Since the probability of successful controlpAw
(n,q)

5GAw
„(2n)21

…, Eq. ~6.8! shows that only forn51 are all

choices of target interval equally likely to achieve cont
in the single-component experiment. Although
choices for target interval have the same length, the corr
tions, which describe the ‘‘first-entry’’ property, affect th
preimage numbers differently for each value ofw
50,1, . . . ,w* . The results obtained by using Eq.~6.8! to
calculatepAw

(n,q) for some trial values ofn andq are given

in Fig. 2. It can be seen that measurable differences in
cess rates are to be expected. However, for the range ofn in
Fig. 2, these differences are not sufficiently large for a s
nificant advantage to be gained by choosing one target
another. Moreover, the spread of values over the orbit dim
ishes asq increases. It should be noted that the more ra
overall decline with increasingn exhibited in Fig. 2 for
higher q values is a result of the larger value ofr in those
cases. Recall that the length of the target is (2n)2r , with
r 5q.
ol
ls

of

l t

ly

th

r

m

et
l
l
a-

c-

-
er
-

d

C. Target length dependence for a given orbit

The form of ther dependence of the probability of suc
cessful control to any choice of target block, and how
changes as the crisis is approached, was discussed in Se
A. Similar behavior is to be expected for control to a pa
ticular period-q orbit (q.1) when a single-component targ
is used.

Consider the period-q point represented by the indefinit
repetition of string 00 . . . 01with q digits and focus attention
on the target interval represented byAq5(.0 . . . 01)q . This
is one ofq choices of target with length (2n)2q that exhibits
symbolically one period of this period-q orbit. Symbolic rep-
resentatives of smaller intervals that contain the same p
odic point can be obtained by extracting longer blocks fro
the symbolic representation of the periodic orbit. For e
ample, Aq1w5(.0 . . . 010 . . . 0)q1w , with w51,2, . . . ,
q21 zeros to the right of the digit ‘1’, followed byA2q
5(.0 . . . 010 . . . 01)2q , and so on. The general form for th
generating function associated with a typical member of t
sequence of code blocks is
GAr
~z!55 zr H ~122z!F (

m51

M

z(m21)qG1zrJ 21

for w50

zr H ~122z!F (
m51

M

z(m21)q1 (
l 50

w21

zMq1 l G1zrJ 21

for w51, . . . ,q21,

~6.9!
s

. 4.

of

it
wherer 5Mq1w is the length of the block, withM a posi-
tive integer andw50,1, . . . ,q21.

Equation~6.9! gives the probability of successful contr
pAr

(n,r )5GAr
„(2n)21

… for the sequence of target interva

represented by the stringsAMq1w . Some special cases are
interest. Ifq51, thenM5r andw50, so that only the first
equation in~6.9! is required and the fixed point result of@1#
is recovered. Note that this generating function is equa
GLL

(r )(z) given in Eq.~6.2! for each value ofr. For eachq
.1, the lowest value ofr in Eq. ~6.9! is q (M51,w50) and
the resulting generating function corresponds toGUL

(q)(z)
given in Eq.~6.2!. If q is increased to a value significant
greater than 1, then, forz5(2n)21, only the term withm
51 makes a numerically detectable contribution to
square brackets in Eq.~6.9! for any value ofw. As a conse-
quence, forq large enough,pAr

(n,r )'GUL
(r )

„(2n)21
… for all

r. This behavior is confirmed numerically in Fig. 3 fo
n51.000 01.

D. Average number of iterations to control when it occurs

The (n,r ) dependence of the average number of ti
steps before activation of the control to a period-q (q.1)
orbit is qualitatively similar to that for the fixed point targ
reported in@1#. For example, calculations oftAr

(n,r ) as a
o

e

e

function of increasingr @i.e., target length (2n)2r decreas-
ing# using Eq.~6.9! show that forn.1, this number reache
a finite limit, which increases asn tends to 1; while, forn51,
it increases indefinitely. Sample results are shown in Fig

FIG. 3. Illustration of the relationship betweenGAr
(z) given by

Eq. ~6.9! and the limiting single-component generating functions
Eq. ~6.2!. The r dependence ofGAr

(z), relative to the lower limit
GLL

(r )(z), is shown for a fixed value ofz51/(2n), with n51.000 01.
Each graph corresponds to a single value ofq51,2,3,4,5. Observe
that ther dependence ofGAr

(z) approaches that of the upper lim
GUL

(r ) (z) asq increases.
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The weakq dependence of the variation oftAr
(n,r ) with

r shown in Fig. 4 can be reconciled with the correlatio
polynomial limits introduced in Sec. VI A. For any single
component experiment target represented by the stringAi ,

FIG. 4. Diagram illustrating ther dependence of the averag
number of iterations to control for the period-q orbits and single-
component targets of the type discussed in Sec. VI C. Example
numerical results obtained by using Eq.~6.9! to computetAr

(n,r )
as a function ofr 5Mq1w for ~a! n51.000 01 and~b! n51 are
presented. In both cases data are plotted forq51,2,3,4, and 5.
Eq. ~2.15! gives the generating function for the numbers
its preimages as

ĜAi
~z!5z2rGAi

~z!5$~122z!CAi
~z!1zr%21 ~6.10!

and the specialization of Eq.~5.3! referred to in Sec. V B
yields

tAi
~n,r !5F zĜAi

8 ~z!

ĜAi
~z!

G
z5(2n)21

5F z@2CAi
~z!2~122z!CAi

8 ~z!2rzr 21#

@~122z!CAi
~z!1zr #

G
z5(2n)21

.

~6.11!

Sincez5(2n)215221(12d)<221, the termsrzr 21 andzr

decrease in magnitude rapidly asr increases and, whenn.1,
they can be neglected forr large enough. Thus Eq.~6.11! can
be approximated by

tAi
~n,r !'F z@2CAi

~z!2~122z!CAi
8 ~z!#

~122z!CAi
~z! G

z5(2n)21

5
12d

d
2F zCAi

8 ~z!

CAi
~z! G

z5(2n)21

. ~6.12!

It can be shown that the minimum~maximum! magnitude of
the correlation dependent term in Eq.~6.12! is attained for
the extreme polynomialC0(z) @C1(z)# given in Eq. ~6.1!,
with the result that this term is bounded below by zero a
above by~12d!/~11d!. Finally, it can be concluded that, fo
n.1,

S 12d

11d D 1

d
< lim

r→`

tAi
~n,r !<S 12d

d D . ~6.13!

Observe that both upper and lower bounds to the limit
value oft converge to 1/d asd→0.

Whenn51, the termsrzr 21 andzr in Eq. ~6.11! cannot be
neglected, becausez is then equal to1

2 and the factor of (1
22z)50. In this case

tAi
~1,r !5F z$2CAi

~z!2rzr 21%

zr G
z5221

52rCAi
~ 1

2 !2r ,

~6.14!

and, when 2r@r , it follows that

log10@tAi
~n,r !#5r log10~2!1 log10@CAi

~ 1
2 !#. ~6.15!

Equation~6.15! shows that a plot of log10@tAi
(n,r)# againstr

is asymptotically a straight line of slope equal to log10(2) and
intercept bounded by

of
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05 log10@C0~ 1
2 !#< log10@CAi

~ 1
2 !#< log10@C1~ 1

2 !#5 log10~2!.
~6.16!

This behavior is consistent with the numerical results giv
in Fig. 4~b!, where the limiting straight lines given by Eq
~6.15! and ~6.16! are shown.

VII. DISCUSSION—MULTIPLE-COMPONENT TARGETS

The aim of this section is to provide an overview of t
properties of multiple-component targets and to comp
them with those of their single-component counterparts.

A. Qualitative properties of generating functions

1. nÌ1

The equations~2.7! and ~2.8! defining the generating
functions associated with the individual components of
target union can be used to show that their sumHLq

(z) takes

a form similar to that ofGAi
(z) given in Eq. ~2.15!. The

result of substituting Eq.~2.8! into Eq.~2.7! can be written in
the matrix form

C~z!H~z!5zr H 12S„H~z!…

122z J J5g~z!J, ~7.1!

whereH(z)5@HLq

(1)
•••HLq

(q)#T, J5@1•••1#T are (q31) vec-

tors, S„H(z)…5( j 51
q HLq

( j )(z)5HLq
(z), and C(z)

5@Ci j (z)# i , j 51
q . Given thatC(z) is nonsingular, Eq.~7.1!

implies

HLq
~z!5S„H~z!…5

zr

$~122z!S„Y~z!…211zr%
, ~7.2!

where Y(z)5C(z)21J. In the special case q51,
S„Y(z)…215CAi

(z) and Eq. ~2.15! is recovered explicitly

from Eq. ~7.2!. Thus, provided the inverse matrixC(z)21

exists and the sum of its elements~the product withJ forms
row sums and the functionSsums these! is not equal to zero
for z5(2n)215221(12d), with small d >0, Eq. ~7.2!
shows that the qualitative behavior of the probability th
control will occur is the same as that for the sing
component target. Moreover, it also follows that, under
same conditions, this statement will be true of the aver
number of iterations to control when it occurs~cf. Sec. VI 1!.

2. nÄ1

This case corresponds toz5 1
2 , when Eqs.~2.7! and~2.8!

give HLq
( 1

2 )51. However, the numbersh( j ,m), and there-

fore HLq

( j )( 1
2 )5(m50

` h( j ,m)22m, are still well defined forj

51, . . . ,q, provided that the summation converges. Valu

for HLq

( j )( 1
2 ) can be extracted from Eq.~7.1! by assuming that

thez derivativeDzHLq
( 1

2 )Þ0 and taking the limitd→0. The
result is

C~ 1
2 !H~ 1

2 !522(r 11)DzHLq
~ 1

2 !J5g~ 1
2 !J. ~7.3!
n

e

e

t

e
e

s

However, it is known thatS„H( 1
2 )…5HLq

( 1
2 )51, so that Eq.

~7.3! yields H( 1
2 )5g( 1

2 )Y( 1
2 ) where Y( 1

2 )5C( 1
2 )21J and

g( 1
2 )5S„Y( 1

2 )…21 .

The quantitiesHLq

( j )( 1
2 ), for j 51, . . . ,q, are the probabili-

ties of first entry into the target unionLq at Aj . The follow-
ing example shows that these probabilities depend onj. Con-
sider control to the period-3 orbit represented by indefin
repetition of the string 001 using the target unionL3
5$A1 ,A2 ,A3%, where A15(001001), A25(010010), and
A35(100100). The correlation polynomials for these targ
component strings can be obtained from Eq.~2.6!, by using

Eq. ~2.2!, and the correlation matrixC( 1
2 ) constructed. Solu-

tion of Eq. ~7.3! then gives

HL3

(1)S 1

2D50.326 037,

HL3

(2)S 1

2D50.331 797, ~7.4!

HL3

(3)S 1

2D50.342 166,

to six decimal places. The differences recorded in Eq.~7.4!
are not large, but they show that the effect of different c
relations between the strings representing the componen
the target is to create an asymmetry between the probabil
of first entry at the individual components of the targ
union.

B. Numerical evaluation of generating functions

Quantitative results can be obtained directly from E
~2.7! and ~2.8! for any chosen periodic orbit and any targ
union containing it. For a particular value ofz5(2n)21, Eq.
~2.7! provides a set of linear equations for the unknown v
ues HLq

( j )
„(2n)21

…, j 51, . . . ,q ~cf. Sec. VII A 2, where

n51!. However, to examine the approach to the crisis it
more convenient to use one of the many computer alge
software packages~such asMATHEMATICA or MAPLE! to ob-
tain the rational functions ofz that satisfy Eq.~2.7! and to
simply evaluate these forms for whatever values ofz are
required. Knowledge of the numerator and denomina
polynomials of the rational generating functionHLq

(z) al-
lows Eq.~5.3! to be used to compute the average number
iterations to control~when it occurs! for the chosen targe
union. By way of illustration, the generating functions ass
ciated with control to the period-3 orbit considered in Se
VII A 2 are presented here.

For the target unionL35$A1 ,A2 ,A3%, the coefficient
polynomialsp i j (z) in Eq. ~2.7! can be derived from the cor
relation polynomials given by Eqs.~2.6! and ~2.2!. The so-
lution of Eq. ~2.7! usingMATHEMATICA 4.0 is

HL3

(1)~z!5
z6~12z1z32z42z61z72z9!

122z1z322z41z52z61z71z82z91z101z13,

~7.5!
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HL3

(2)~z!5
z6~12z1z32z4!

122z1z322z41z52z61z71z82z91z101z13,

~7.6!

HL3

(3)~z!5
z6~12z1z32z41z52z61z82z9!

122z1z322z41z52z61z71z82z91z101z13.

~7.7!

The numerator and denominator polynomials in Eqs.~7.5!–
~7.7! are relatively prime and all three share the same

nominator. Forn51, the values ofHLq

( j )( 1
2 ), for j 51,2,3,

obtained from Eqs.~7.5!–~7.7! with z5 1
2 , are precisely those

given in Eq.~7.4!. Figure 5~a! shows plots ofHLq

( j )
„(2n)21

…,

j 51,2,3, for some trial values ofn.1. It can be seen that a
three quantities fall toward zero asn increases. The corre
sponding values of the probabilitypLq

(n,r )5HLq
„(2n)21

…,
obtained by summing overj, are shown in Fig. 5~b! together
with data obtained when each of the intervals of the tar
union is used as a single-component target. Figure 5~c! com-
pares the multiple- and single-component target results
showing then dependence of the ‘‘advantage’’ of the form
over the latter. The advantage passes through a maxim
value approximately equal to 0.14 forn'1.02 and falls to

FIG. 5. Plots showing~a! the probability of first entry into the
target unionL35$A1 ,A2 ,A3% at each of its three disjoint compo
nents,~b! the probability of successful control usingL3 in relation
to the corresponding probabilities for single-component targ
A1 ,A2 ,A3, ~c! the advantage,Aj (n)5HL3

(z)2GAj
(z), z51/(2n),

gained by the multiple-component target over its single-compon
counterparts, as functions ofe5n21.
-

t

y

m

values near zero for~a! n significantly different from 1, and
~b! n tending to 1. The trend in~a! comes from the reduction
in all preimage lengths that occurs whenn increases, with the
result that the probability of successful control falls to ze
in both types of experiment. The behavior in~b! follows
because the probability of successful control tends to unit
both multiple- and single-component experiments, asn ap-
proaches 1.

Figure 5 suggests that there is little advantage to usin
multiple-component target, particularly in the immediate
cinity of the crisis. For such values ofn both multiple- and
single-component experiments succeed in reaching their
gets with probability close to 1, but the average number
iterations to control~when control occurs! can be signifi-
cantly smaller when a multiple-component target is us
Equations~7.5!–~7.7! can be used to obtainĤL3

(z) @cf. Eq.
~5.1!# for the period-3 orbit to which they refer. Equatio
~5.3! then allows the average number of iterations to cont
tL3

(n,6), for that orbit to be calculated. The correspondi

single-component quantities,tAi
(n,6), i 51,2,3, can be ob-

tained using the correlation polynomials given by Eq.~2.14!
in conjunction with Eqs.~6.10! and~6.11!. Computed values
of tL3

(n,6) andtA1
(n,6) are compared in Fig. 6. The value

of tAi
(n,6) do not depend strongly oni, and, indeed, are the

same fori 51 and 3. It can be seen that, forn near 1, the
multiple-component target leads to a significant improv
ment in the average waiting time to control in this examp

C. Application of recurrence relations

The generating functions discussed in Sec.VII A provi
the probability of successful control, and the average num
of iterations to control, in the limit of arbitrarily large num
bers of iterations. The analysis of Sec. IV provides expl
values for the numbers of first-entry preimages of finite or
and this can be used to compare the effectiveness
multiple- and single-component targets for finite numbers

ts

nt

FIG. 6. Comparison of the average number of iterations to c
trol for the period-3 orbit using~a! the target unionL3 and ~b! the
target intervalA1 as a function of the distance from the crisis me
sured by the negative, base-10 logarithm ofe5n21.
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iterations. The example of control to a period-3 orbit, intr
duced in Sec.VII A, can be used to illustrate the results
calculations of this kind.

The correlation coefficients for the stringsA1
5(001001),A25(010010), andA35(100100) are given by
Eq. ~2.2!, and the numbers of first-entry preimages for ea
of the components of the target unionL35$A1 ,A2 ,A3% are
obtained by substituting them into Eq.~4.2!. For example,
when i 51, Eq. ~4.2! gives

hL3
~1,m11!52hL3

~1,m!2hL3
~1,m22!12hL3

~1,m23!

2hL3
~1,m25!2hL3

~2,m21!12hL3
~2,m

22!2hL3
~2,m24!1hL3

~2,m25!

2hL3
~3,m!12hL3

~3,m21!2hL3
~3,m23!

1hL3
~3,m24!1hL3

~3,m25! ~7.8!

for m5k1r>6. Observe that the right-hand side of E
~7.8! includes numbershL3

( j ,m2s) with j 52 and 3 in ad-

dition to those withj 5 i 51. Such ‘‘cross-correlation terms’
do not appear in the recurrence relations associated
single-component targets but are a feature of the multi
component case. Initial conditions for the use of Eq.~7.8!,
and the equations arising from Eq.~4.2! when i 52 and 3,
are hL3

( i ,m)50, m51, . . . ,5, hL3
( i ,6)51, i 51,2,3. Of

course, the quantity of interest in the multiple-compon
experiment is the sum overi of the number of preimage
corresponding to first-entry at componenti of the target
union, i.e.,

Nk
(6)~L3!5(

i 51

3

hL3
~ i ,k16!, ~7.9!

for k50,1, . . . . Moreover, it is this number that is to b
compared with the single-component counterparts obta
by substituting the diagonal~or ‘‘self-’’ ! correlation coeffi-
cients into Eq.~4.3! to obtain Nk

(6)(Ai)5gAi
(k16), for k

TABLE II. Comparison of first-entry preimages given by E
~7.9! with their single-component counterparts for selected val
of the orderk.

k Nk
(6)(L3) Nk

(6)(A1) Nk
(6)(A2) A1 /L3 ~%! A2 /L3 ~%!

0 3 1 1 33.33 33.33
1 3 2 2 66.67 66.67
2 6 4 4 66.67 66.67
3 12 7 7 58.33 58.33
4 24 14 14 58.33 58.33
5 46 28 27 60.87 58.70
6 90 56 54 62.22 60.00
7 175 110 106 62.86 60.57
8 341 216 210 63.34 61.58
9 664 425 413 64.01 62.20
10 1293 838 815 64.81 63.03
20 1015143 738864 721171 72.28 71.04
30 796960021 651164399 638552724 81.71 80.12
-
f

h

ith
-

t

d

50,1, . . . andi 51,2,3. Table II contains such comparativ
data for some selected values ofk. Note that Nk

(6)(A3)

5Nk
(6)(A1) ~becauseA35Ā1) while Nk

(6)(A2) is slightly
smaller ~because the self-correlation coefficients ofA2 are
different from those ofA1 and A3). Although Nk

(6)(L3)
dominatesNk

(6)(Ai), particularly at lowk, the growth rates of
the recurrence relations are different and both sequence
numbers have the property that their sums, when weigh
with the n51 preimage lengths of 22(k16), are unity. More
generally, the partial sums~to n terms! of both sequences
when weighted with then.1 pre-image lengths (2n)2(k16),
give the probabilitiespL3

(n,6;n) andpAi
(n,6;n) of success-

ful control in less than or equal ton iterations. The advan-
tage, Ai(n,n), of the multiple-component target over th
single-component target can then be defined by

Ai~n,n!5pL3
~n,6;n!2pAi

~n,6;n!

5 (
k50

n

@Nk
(6)~L3!2Nk

(6)~Ai !#~2n!2(k16).

~7.10!

In the limit n→`, the summation in Eq.~7.10! converges to
the limiting advantages shown in Fig. 5~c!. The form of then
dependence ofAi(n,n) changes significantly asn ap-
proaches unity from above~see Fig. 7!. The weaki depen-
dence ofAi(n,n) is not important here and attention is fo
cused on the single-component data forA2 . For n51, the
advantage associated with the multiple-component ta
passes through a well-defined maximum of about 0.22 w
n is approximately 50. Asn increases above 1, the height
this maximum declines and its definition deteriorates un
for n51.05, only a ‘‘shoulder’’ remains and the advantage
the multiple-component target is essentially constant fon
.50. The number differences in Eq.~7.10! are independen
of n and therefore the behavior shown in Fig. 7 reflects
shift in weight away from the lower values ofk in Eq. ~7.10!

s

FIG. 7. Numerical results showing how then dependence of
A2(n,n) changes asn increases above 1. For the values ofn used in
this diagram, the limiting values of the multiple-component adva
tage asn tends to infinity are given in Fig. 5~c!.
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as n increases. Thus significant gains in probability of su
cessful control to a nontrivial periodic orbit can be achiev
by using a multiple-component target providedn is suffi-
ciently close to unity. Moreover, in the present examp
such gains occur at relatively small numbers of iterations

VIII. CONCLUSION

The combinatorial techniques used in@1# to treat the sta-
tistics of OGY control to the nontrivial fixed point of tran
siently chaotic tent maps have been extended to perioq
orbits with q.1. Two types of statistical experiment hav
been analyzed:~a! multiple-component experiments in whic
the periodic orbit is accessed through a target consistin
the union ofq disjoint intervals each containing one of theq
periodic points; and~b! single-component experiments
which a single interval containing any one of the period
points is targeted. As in@1#, the aim is to count the number
of first-entry preimages of the symbolically defined targ
interval or union. Given the binary string~s! defining the tar-
get, a closed form can be obtained for the generating fu
tion for the required preimage numbers, which, in tu
yields the probability of control taking place and the avera
number of iterations to control when it occurs. Recurren
relations for the numbers of first-entry preimages of the
get allow calculation of the probability of control occurrin
in less than or equal to a chosen number of iterations.
results for experiments of type~a! are complicated by the
appearance of cross correlations between the strings re
senting the different components of the target union.

The tent map itself~n51! is a prototype of chaotic behav
ior and the crisis of its chaotic attractor that occurs in
family of tent maps~n>1! studied here is representative
the behavior of other families of unimodal maps. The sy
bolic approach to the application of the OGY strategy
transiently chaotic tent maps allows an exact treatmen
control to nontrivial periodic orbits to be developed for th
important paradigm. The results obtained allow a form
ev

sa
-
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,
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of

t

c-
,
e
e
r-

e

re-

e

-

of
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study of the design of numerical experiments that can ac
a valuable guide to dealing with models where exact so
tions are not available and statistical experiments provide
only feasible approach. This aspect of the work presente
@1# has been discussed in@7#. Here it has been illustrated b
comparing the properties of experiments of types~a! and~b!.
The absence of cross correlations between different com
nents of the target union means that the analysis based
single target interval is better suited to questions involvin
range of values ofq or r. In such cases, generating functio
are easily obtained without recourse to computer alge
and recurrence relations can be iterated within a single
or column of an array. The examples considered indicate
the qualitative behavior of the probability of control, and t
number of iterations to control, are the same for both typ
of target, and that quantitative differences arising from c
relation effects are of secondary importance for sing
component targets. However, significant gains in both
practical success rate and the number of iterations to con
can be achieved by using the multiple-component tar
when the operational conditions are sufficiently close to
crisis.

It is important to note that combinatorial aspects of t
symbolic analysis presented above are determined solel
the symbolic dynamics of the system at the crisis. Con
quently, the preimage numbers obtained at a given order
equally valid for maps other than the tent map that have
same symbolic representation. The difficulty in using the
results to obtain information about such maps is that, in g
eral, the preimage lengths are then not the same for all
images of a given order. The simple transition from fir
entry, order-k preimage numbers to a probability density
order k by multiplying by the preimage length is no longe
valid. However, the symbolic approach clearly admits an
act treatment of the ‘‘first-entry’’ aspect of the application
the OGY strategy to unimodal maps near crisis, and work
the translation of this information into statistical paramet
for more general unimodal maps continues.
t-
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