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Control of transient chaos in tent maps near crisis. Il. Periodic orbit targeting
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Recent work on a symbolic approach to the calculation of probability distributions arising in the application
of the Ott-Grebogi-Yorke strategy to transiently chaotic tent maps is extended to the case of control to a
nontrivial periodic orbit. Closed forms are derived for the probability of control being achieved and the average
number of iterations to control when it occurs. Both single-component and multiple-component targeting are
considered, and illustrative examples of the results obtained are presented.

PACS numbdps): 05.45-a

I. INTRODUCTION In symbolic terms, the single code block describing the tar-
get interval for the fixed point ifl] is replaced byg code

In earlier work[1] the problem of using the Ott-Grebogi- blocks representing thg components of the target union for
Yorke (OGY) strategy to control the orbits of a transiently the periodic orbit. In order to ensure that only first entries
chaotic tent map to its nontrivial fixed point was consideredinto any component are counted, it is necessary to avoid
A numerical experiment was envisaged in which initial occurrences off code blocks in the preimage formation pro-
points were chosen at randofine., according to a uniform cess.
distribution in [0,1] and the probability that the OGY target ~ As in the fixed point case, the symbolic approach places
interval was reached in less than or equal to a chosen numbgeme limitations on the choice of target intervals. In particu-
of iterations was obtained. A symbolic dynamic approachlar, for multiple-component targets, the requirement that
was adopted that allowed the probability distributions assoeach component of the target union contains one and only
ciated with such an experiment to be obtained in closed forndne periodg point imposes stronger constraints than in the
and the results were interpreted in relation to the work df Tefixed point case. For example, if a minimum of one symbolic
[2]. period of the orbit is used to define each target interval then

In order to extend the symbolic analysis usedllihto the  the maximum length of each component of the target union
case of OGY control to nontrivial periodic orbits, it is im- is 2~ 9. This constraint also applies to the single-component
portant to be clear about the details of the numerical experitarget if the periodic orbit under consideration is to be clearly
ment that is to be treated. For example, control to a pegiod-identified or if comparisons of the distributions for tlye
orbit of a mapT:R—R, could be achieved by taking a target possible choices of single target are to be made.
interval around one of the fixed points of thgh power of It should be noted that the present discussion is concerned
the map and generating the orbits of randomly chosen initiapnly with the probability that iterates of the map itself first
points underT9 until the target interval is reached. Such anenter the chosen targéie., stage 1 of the OGY control
experiment involves different probability distributions from procedurg When the orbit is inside the target, the control is
one in which a target interval is chosen around the samépplied(stage 2 of the OGY methgdo as to ensure that the
periodq point but the iterates of initial points under the map orbit of the controlled system remains close to the pegod-

T itself are consideredcf. [3,4]). Since T9 is commonly  orbit. The latter phase of the control process is not consid-
obtained by makingy iterations of T, it would seem to be ered in this paper. It is assumed that once the target has been
perverse to check if the target interval had been reached ongntered control can be maintained.

at everyqth iterate. However, even if checks are made at

each iterate, the procedure relies upon reaching the periodic

orbit via a ‘“single-component” target. From a symbolic Il. NUMBERS OF FIRST-ENTRY PREIMAGES

standpoint, such an experiment is similar to the fixed point

problem(see[1]) in that only a single binary string is to be
avoided during preimage construction.

The symbolic approach lends itself naturally to dealing;
with an alternative experiment in which the target is taken toI'St
be a union ofy disjoint intervals, each of which contains one,
and only one, of the periodic points that make up the
periodq orbit, i.e., the target consists gf disjoint compo-
nents. In such a “multiple-component” experiment, the  The numbers of first-entry preimages of each component
periodq orbit can be reached throughdisjoint target com- of the target union for a period-orbit can be obtained by
ponents each containing one of its periodic points. The nuusing combinatorial arguments similar to those discussed by
merical experiment considered takes a randomly chosen ini2dlyzko [5] and developed in greater depth by Guibas and
tial point in [0,1] and obtains the probability that its orbit Odlyzko[6]. The latter reference contains an intriguing col-
first reachesnyone of theq components of the target union. lection of applications of the same type of string counting:

The results for the single-component target are contained,
as a special case, within the analysis of the multiple-
component experiment and, therefore, the latter is presented

A. Multiple-component targeting
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TABLE |. Decomposition of thgK;=BA;|B counts forqu(m)} according to the position of the possible
occurrence of elements &f,. The indexj appearing in this table can take any of the valugs. 1,g.

Type ofK; No. of type Condition for convergence S
bib ... b h (j,m+1) aPay) ...a=aa) ... a0 0
bib, ... by sAjaL h (mtr-1)  aPad .. .al,=alal .. .al) 1
bib, .. .by_oA;a") ja) hy (j,m+r—2) alad) .. .aM,=afay) .. .al) 2
biby .. .byi1ARY .. Al h (j,m+1) af)=al) r—1

from coin-tossing games, through clustering problems, tanother way. Althougl does not contain any elementlof
prefix-synchronized codes and pattern matching algorithmsas a substringS; can contain such substrings as shown in the

1. The string counting problem

Let Ai=(.a’ay...a"), i=1,..., be the code
blocks representing thg components of the target union for
the periodg orbit under consideration, and I¢1q={Ai|i
=1,...

first column of Table I.

Every K; must belong to one, and only one, of the types
specified and, consequently, the total numberKofis the
sum of the numbers of each type Kf that occurs. The
number of each type &; is given in the second column of

q} be the list of representatives of the target union.1able |. However, a particular type & occurs if and only

In order to construct first-entry preimage codes for the targeff the condition given in the third column of the table is

union, each element chfq must be considered in turn. Recall

that, since the tent map, is conjugate to a leftshift on

satisfied. These conditions can be represented by indicator

functionsc;;(s) defined, fori,j=1,... g, by

infinite binary sequences, the preimages of such an element

are constructed by repeatedly adding 0 or 1 to its left-hand
end and counting only those resulting codes for which ndii(8)= 0

element ofL, appears in the leftmostpositions. It follows
that, for a particular elemem; of L, first-entry preimage
codes of ordek are binary strings of lengtm=k+r, which

haveA; at their right-hand end but do not contain any ele-
as a substring of adjacent characters, else-

ment of L,
where in them. Since the elementslqf are distinct, so are
their preimage codes, and therefore the set of okdérst-

entry preimage codes for the target union is the disjoint

union of those for the individual elements lof .

Define (a) qu(m) to be the number of binary strings of
length m that do not contain any of the elements lof as
substrings ofr adjacent characters within them; aith)
h,_q(j ,m) to be the number of binary strings of lengthwith

A; at their right-hand end but with n4;, i=1,... g, oc-

curring as a substring af adjacent characters elsewhere in

them.

Let B=(.b;b,...b,) be counted forqu(m) and ob-
serve that the string;b, . . . b,,b, whereb is either 0 or 1, is
a string of lengthm+ 1 that has ondand only ong¢ of the

following properties:(0) it contains none of the elements of

Lq; (1) it containsA; with Aj=by, 5 .. .byb; (2) it con-
tainsA, with A,=b,,_, ., ...byb; ...; (g it containsA;
with Ag=Dby, (42 . . . byb. The strings appearing in proper-
ties (1), ...,(q) have an element df, at their right-hand

end but there are no other occurrences of any of these sub-

strings elsewhere in the concatenat®in It follows that

q

2f (m)=f, (m+ 1)+ he (im+1). (21
=1

Now consider the concatenatiéh=BA; , for any choice of

i=1,...4. Clearly, there are precisefyq(m) such concat-

enations for each because there is one for every possible
However, the number of concatenatidfscan be counted in

1 ifafad...a® —a®,al),...a®
otherwise,

with s=0,1, ... r—1. It follows that, for eachi=1, ... q,

q r—1

fL(m=2 > c;(s)h, (j,m+r—s). (2.3
q j=1s=0 q

2. Generating functions

Generating functions for the numbers of binary strings of
given length that have the above properties can be obtained
as follows. Multiplication of Eqs(2.1) and(2.3) by z™, and
summation ovem from zero to infinity, can be shown to
yield the following relationships between the generating
functionsF, (2) andH,_q(J)(z) for the numberd, (m) and

th(j,m), i=1,...4, respectively. Equatiof2.1) gives

q
2F (D=2 "F (2-D+z "2 H V(2), (24

and, fori=1,... g, Eq.(2.3 leads to

q

FL@=2"2 CyH D@, 2.5
where the coefficient
r-1
Cij(Z):go Cij(S)ZS (26)

is the correlation polynomial for the string§ and A; (cf.
Odlyzko[5]). Elimination ofFLq(z) from Eg.(2.4) by using
Eqg. (2.5 results in a set of linear equations, with polyno-
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mial coefficients, for the unknown generating functionsand
HLq(J)(z), j=1,...9. More precisely, foi=1,... g,
Fa(2)=2 "Ca(2)Ga(2), (2.13
q
> 7Tij(Z)l‘|Lq(j)(Z)=Zr, 2.7 where

r—1

Ca(2)= 2, cii(s)2" (2.14

S=

where

le(Z):(l_ZZ)C”(Z)‘l‘Zr (28)

These equations have a unique solution provided that thEl€"€F (2) andGx (2) are the generating functions for the
coefficient matrix is nonsingular over the field of rational numbersf (m) andg (m), respectively, an€, (2) is the

functions. correlation polynomial for the target strirfg with itself (see
Observe that the numbelr@ (j,m) obtained from the ex-  Odlyzko[5]). Substitution of Eq(2.13) into Eq.(2.12 gives

pansion of the rational func'uomL )(z) are zero form

<r, for anyj (there are no strlngs satisfying the defining - " z'
property of length less tharn and the number of first-entry GAi(Z)sz:O 9a(mM)z ={(1—22)CA,(2)+ZV}'
preimages ofA; of orderk is given bthq(j,k+r). More- ' (2.15

over, the total number of ordée-first-entry preimages for
the periodg orbit contained in the target union is given by The numberg, (m) are zero fom<r andga (r)=1 (there

a is precisely one string of lengthwith A; at its right-hand
" _ . end and none of length less thenand the number of first-
Nic*(La) 2 Lq (k). 2.9 entry preimages of,; of orderk, N(kr)(Ai), is gAi(k+ r).
These numbers can be obtained directly from a generating
function HLq(z) that is the sum ovef of the generating
functionsH, (i)(z)_ A. Successful control for a multiple-component target
q

IIl. CALCULATION OF PROBABILITIES

For the hypothetical numerical experiment described in
B. Single-component targeting Sec. |, the probability of achieving control to the perigd-
orbit is given by the total length of the first-entry preimages
ontributing to the particular event considered. For example,
ontrol in less than or equal titerations of the map occurs
with probability PL, (v,r;n) given by

Corresponding results to those given in Sec. Il A can be
obtained for the single-component target by replacing the lis
L4 in the multiple-component analysis by the particular code
block A; representing the single target interval. Of course,
any of theq members of the list, can be chosen for this N nq
purpose. Apart from its effect on the definitions of the binary r Kir Ker
strings involved in the first-entry preimage codes, this g N( )(L (2w (= Z Z J kt)(2v) 00
change simply removes the summations over the elements of
Lq in the key results(2.1) and (2.3). These equations are
replaced by 2:

HM_Q

e m)(2v) - " 3.

2fa(mM)=fa(m+1)+ga(m+1) (210 This follows because thg components of the target union

all have length (2) ™" and the process of taking preimages
and reduces the lengths of these components by a factor 662
(1 each unit increase in order. Recall thqtq(j,m)=0 for m

f _ B Tr— 21 <r andj=1,...g. In the limit of arbitrarily largen, Eq.
Alm) 52 Ci(S)9a (M+T=5), 213 (3.1 gives the probabilip, (v.r) that control is ultimately

achieved with the target unidn, . The result is
respectively. In Egs(2.10 and(2.11) g has been used in- g dny

stead ofh to emphasize that the strings involved must avoid q

only the single code blocR;, and not the whole list . It — i C T — 4) -1

is therefore appropriate to use the same notation as was used qu(V’r) ,!Er;[qu(V’r’n)] ,Zl HLq ((2v)7)

in [1] for the fixed point case. Indeed, the fixed point prob-

lem corresponds to Eq(2.11) with c;(s)=1, for s = HLq((ZV)_l)- 3.2

=0,1,...r—1. Multiplication of Egs.(2.10 and(2.11) by

z", and summation ovem from zero to infinity, can be A valuable check on the expressions for the generating func-
shown to yield tions HLq(J)(z), obtained by solution of Eq(2.7) is that
qu(l,r)zl. This must be the case because, #erl, the

(1_22)FAi(Z)+GAi(Z)=l (2.12 orbits of all points remain if0,1] indefinitely and, with
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probability 1, the orbit of any choice of initial point will n
ultimately reach one of the components of the target union Pa,(v,rin)= > N((A)(2v) ~ KD
(cf. [1], Sec. IV A). k=0

n

B. Failure of control for a multiple-component target => a, (K+ ry(2v) -k
=0

The binary strings that count fo‘qu(m) are of lengthm

n
and do not contain any element of the &gt Whenv>1, B m

each such string represents a subintervd‘]aOQI], of length _mE:o gAi(m)(ZV) 3.7
(2v) ™™, containing points with orbits that do not encounter

any member of the target union m iterations. Such a sub- and

interval contains points of two distinct types. Each subinter-

val can be disjointly decomposed into a preimagelength pAi(v,r): lim [pAi(v,r;n)]=GAi((2v)*1), (3.8
(1—v YH(2v)"™M of the escape intervale made up of n—o

points[of type (i)] whose orbits leav¢0,1] in m+1 itera-
tions without being controlled; and the complement in the
subinterval[of length »~(2v) ~™] of this preimage ofig, n
made up of point$of type (ii)] whose fate is not decided in - R | -m

n iteratigns. IIat foIIows}f[Eat Pa(pirin)=(1=v )mz:o fa(m(2n)™ 39

respectively; while

n J—
_ (1.1 -1
PL(viim=(1-vH 3 f (M2 " (33 Pa(r:) == OFA (217, (310
and
is the probability that the orbit of a randomly chosen initial
point will enterl ¢, without passing through the target union, Ga((2n) ™ H+(1-v HFA((2v) H=1 (3.1)

in less than or equal ta iterations of T,. Thus Eq.(3.3

gives the probability of selecting an initial poifuf type (i)] replace Eqs(3.3), (3.4), and(3.5). Here Eq.(3.11) follows
for which it is clear aftem iterations that control will never directly from Eq.(2.12) with z=(2») *. The analogous re-
be achieved. In the limit in whiclm becomes arbitrarily sult to Eq.(3.6) simply hasA; rather thanL, labeling the
large, the contribution from points of tyd&) must tend to  probabilities involved.

zero. This is the case because, for1, almost all(in the

sense of Lebesgue measuisitial points have orbits that IV. RECURRENCE RELATIONS
ultimately leave[0,1] and, for sufficiently largen, the fate ) _ _ ) )
(i.e., whether its orbit is controlled or noof almost every The generating functions obtained in Sec.ll provide a

point must be determined. It can therefore be concluded thdtractical means of calculating the limiting probabilities, de-
fined in Sec. Ill, as functions of andr. However, the ex-

pansion of the appropriate generating function in powes of
does not lead to a particularly efficient algorithm for obtain-
ing the numbers of first-entry preimages needed to compute
the probability of success or failure of control in less than or
equal to a finite numbenm of time steps. Such computations
are best performed with the aid of the corresponding recur-
rence relation. These relations are contained in the funda-
. . N mental equationg2.1) and(2.3) for the multiple-component
HLq((ZV) )+(1-v )FLq((ZV) )=1, (3.9 target and2.10 and(2.11) for the single-component experi-
ment.

P (rn)=(1= v HF (2171 (3.4

is the probability that the orbit of a randomly chosen initial
point will never be controlled. Moreover, the interpretation
of the generating functions given in Eq&.2) and (3.4) is
confirmed by Eq(2.4), which can be written in the form

SO thatqu(V,r)'i-an(v,l’) is equal to unity, as required.

Observe thaﬁq(l,r) =0, so that control is always achieved A. Multiple-component target

when v=1. For finite n, there is a nonzero probability = Equation(2.3) gives, for eachi=1, ... g,

qu(v,r;n) that the fate of the initial point is undecided in .

less than or equal to iterations, and then qu(k+1): 2 cij(O)th(j K+1+1)
=1

qu(v,r;n)+u,_q(v,r;n)+a_q(v,r;n)=1. (3.6 ro1

+ 21 cij(s)h, (J.k+r—(s—1))
Py
C. Outcomes for a single-component target

Similar arguments can be used to derive analogous prob- :hl-q(i K+1+r)

abilities of success or failure of control for the single- q r-2
component target experiment. The probabilities for success- i e (s+Dh (i K+r—s) (4.1
ful control corresponding to Eq$3.1) and(3.2) are ;1 s§=:0 il he (. ), (4.1)
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sincec;;(0)= &;; , the Kroneckers function. Substitution of D. Probability distributions for finite numbers of iterations

Eq. (4. into Eq. (2.1) (with mreplaced byk) then yields The recurrence relations developed above allow calcula-

q r—1 tion of probabilities such a:p,_q(v,r;n), u,_q(v,r;n), and
h,_q(i,k+r+1)=2 [22 cij()hy (j k+r=s) Eq(v,r;n) for chosen values ofi, without recourse to the
=i Lm0 expansion of the rational forid |_q(x) to obtain the numbers
N{’(L) for k=0,1,...n. Even for the single-component
target, where the generating functions are easily obtained, it
is more convenient to compumi(v,r;n), uAi(v,r;n), and

r—2

-2 cij(s+1)h, (j,k+r—s)
s=0 q

—th(j ,k+1)] pAi(v,r;n) from the recurrence relation.

q r-1 V. AVERAGE NUMBER OF ITERATIONS TO CONTROL
=2 2 [2¢(s)—cyj(s+1)]
j=1 0
xh, (j,k+r—s), 4.2) . In [1], the generating functloGr'(z) for the numbers of .
a first-entry preimages of the target interval was used to obtain
the average number of iterations for control to be achieved,
given that the orbit of the initial point was controlled. In
order to carry out the equivalent derivation for a pergpd-
orbit with multiple-component targeting, it is convenient to

extract a corresponding quantit}}i,Lq(z), from the rational
_ k ~ generating functiord, (z) defined in Eq.(3.2). Recall that
>r provided that the correlation coefficients are known. .

Note that the integer variablein Eq. (4.2 corresponds to h'-q(J m)=0, form=0,1, ...y —1, because there are no bi-

the order of the preimage of the target component ufiger &y strings of length less thandigits that contain any ele-
ment ofL,. Thus

& A. Multiple-component experiments

wherec;;(r)=1. Equation(4.2), with m=k+r, provides an
expression fothq(j ,m+1) in terms of th(j 1) with j
=1,...9 and Il=mm-1,... m—r+1. Given that
th(j,m)=O form<r andth(j,r)=1, forj=1,... 4, Eq.
(4.2 allows th(i,m), i=1,...0, to be generated fom

B. Single-component target ® q
When the corresponding arguments are applied to Egs. HLq(Z):mE:O Lzl h,_q(j,m)}zm=er,_q(z), (5.9)
(2.10 and(2.11), the result is
r—1 h
where
ga(M+1)= 2, [26;(s)=Ci(s+1)]ga (M=9),
4.3 ® [ q
where c;j(r)=1, ga(r)=1, and gn(m)=0, for m HLq(Z):Zirm}::r [J’Zl th(j,m)}zm
=1,...r—1. For a particular choice of the code blo&k, w a
the correlation coefficients can be calculated and EBd) . . K
allows the numbers of first-entry preimages of order _go nty 121 h (0.k+r)z
=m-—r to be obtained for the corresponding target interval.
_ (r k
C. Correlations go Nic'(Lg)Z" 5.2

In comparing Eqs(4.2) and(4.3), it is important to note

that the latter contains no cross correlations: only the correA similar argument to that used [d] can be applied to Eq.

lation coefficients of the target string with itself are involved. . '
On the other hand, Eq4.2) shows that, for the multiple- (5.2 to show that the average number of iterations to control

component target, the numbers of first-entry preimages of 9IvVen by
each member of the target union involve the correlation co-

efficients of its code block with every member of the ligt. oy

. zH/ (2)
It follows that, for the single-component target, the recur- 7 (nr)= q (5.3
rence relation involves only numbers of first-entry preimages bt ™ H, (2) '
of the target interval itself. In contrast, the recurrence rela- d z=(2n)~t

tion for a particular component of the multiple-component

target additionally involves such numbers for other COMPOEqation (5.3) provides the limiting value of the average
nents of the target union. It is perhaps worth noting that Edpmper of iterations to control, when control occurs, that
(4.2) only provides a stepping stone to the real o(tr))Jectlve "Mshould be obtained from experiments that admit arbitrarily
the multiple-component  experiment, namelfN’(Lq)  |arge numbers of iterations for each member of an arbitrarily
=3j_1h (j.k+1), the number of ordek; first-entry preim-  |arge sample of initial points. The recurrence relations, given
ages to the target union as a whole. in Sec. IV, allow the more practical estimates,
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n 1.2 o UL
kN(r)L 2 —(k+r) l{oooccooc00000g oLL
5, ko .
LN =—q , (5.4 2 06 ce
_ s 04 oe
> Nf(r)(Lq)(Zv) (k) 0.2 °3e
k=0 0 °80800000000000000
0 5 10 15 20 25 30 35
to be computed for any chosenThese quantities give valu- d
able information about how quickly the largelimit is ap- @

proached for different choices efandr.

0.15 « *
B. Single-component experiments '§ o0 . .
In such an experiment, the calculation of the average & o .
number of iterations to control, given that control takes  *% . .,
place, is formally the same as that presentefllinfor the 0.00 vosese’ . —2%04000se .
fixed point target, except that the recurrence relation and the 0 5 10 15 20 25 30 33
generating function are determined by the target interval r

code blockA; rather than (.1...1). The lack of cross
correlations means that the analysis is considerably simplei
than the multiple-component case using the same value of 100.0 Jeto0000ccscsces

It follows that it is easier to study thgandr dependence of E' 800 o

7 using this kind of experiment. The equivalent results to > 600 .

Egs.(5.1)—(5.4), for the single-component target, can be ob- —“ 40.0 .

tained by making the following notational changés- G, Q"‘ 20.0 .

Lq—Ai, h—g, (j,m)—(m), and §,k+r)—(k+r), and 004 eseeseesesnt® . : . .

>{_; no longer appears. 0 5 10 15 20 25 30 35
VI. DISCUSSION—SINGLE-COMPONENT TARGETS ©

The purpose of this section is to highlight some of the FIG. 1. lllustration of ther dependence of the limits to the
features of control to a nontrivial periodic orbit that follow probability of successful control foz=1/(2v) with »=1.000 01:
from the above analysis. (a) plots of the limits given by Eq(6.3); (b) the spread of possible

values given by Eq(6.4); (c) the spread of possible values ex-
pressed as a percentage of the lower lialt).
A. Some overall limits on the probability of successful control

The analysis of the single-component experiment for a G(l(2)=7{(1-22)Cy(2)+ 2} * and
nontrivial periodeg orbit is formally similar to the treatment (6.2
of the fixed point problem, but differs from it in the correla- Do -1
tion coefficients that are involved. In the fixed point case, the G(LL)_Z {(1=22)Ci(2)+23
pattern of these coefficients with increasing particularly . L
simple because they are all equal to urigge Sec. Il B It follows that the probability of successful control satisfies
When the code block representing the target interval is no
longer simply (.1 ... 1), less trivial patterns of correlation GR((2v) H=pa(r,)<GH(2v)™Y, (6.3
coefficients emerge. However, Eg.15 shows that the gen- '
erating function does not depend strongly on the variations i
correlation coefficients that may arise.

Recall that, for a given value of the correlation polyno-
mial is of degree at most (- 1) and has coefficients that are
either 0 or 1. Moreover, since only correlations of the targe
string with itself are involved in the single-component ex-

or any target stringy; of lengthr.

The limits of the probability of successful control given
by Eq.(6.3 are plotted in Fig. (a as a function of the target
tstring lengthr for »=1.000 01. The difference

periment, the coefficient af® must be unity. It follows that G (2v) ™ H-6(2v) ™Y
the correlation polynomial for any target block of length " .
lies between the extreme cases | 7T (1-279(1-2")

(6.9

“l1— _ +1
(1-2z+72)(1-2z+7 )Z=(2V)_1

Co(2)=1 andCy(2)=1+2z+ --+2 " 1=(1-2)/(1-2z).
6.1
63 is a measure of the spread of possible values for the prob-
ability of control taking place. In general, as illustrated in
Consequently, the generating function given in Eg.15 Fig. 1(b), this spread passes through a well-defined maxi-
has upper and lower limits of mum forr=r, given by
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/ In(z)}
z=(2v)~1

12
1+

{(1—22)(1—2)
In

fo= (1-2z+72% ’

(6.5 s

where[*] is the smallest integer greater than or equal to *. E 03 :gégl
It would be wrong to conclude that correlation variations § —m—0010
have a significant effect opAi(v,r) only for values ofr “i 06 | —— 00001
lying within the peak in the spread of its possible values. For:fg —o—00010
values ofr lying below the peak, both limits are close to £ —+- 00100
. . . . . g 2 04 —0— 000001
unity and the spread is genuinely of little significance; but = o 000010
for values ofr above the peak both limits are near to zero e 000100

and the spread of possible values can represent very signifi 02
cant relative differences in the probability of successful con-

trol. For example, with (2) '=2"1(1-6) and 2 '<é o 7 : : : : :
<1, the limits given in Eq(6.3) yield 0 1 2 3 4 5 6 7
'10g10(€)
—-r -r
% (27;) <pa(v,r)< (2v) (6.6) FIG. 2. lllustration of the intraorbit variation of the success rate

of OGY control with the choice of target interval in a single-
component experiment. Graphs show the values of the probability
Ideally, in numerical experiments, it is advisable to arrangeof successful controlp, (v,q), ase=v»—1 approaches zero from
for the probability of control to be close to unity, but if low above. Each plot corresponds to one of the possible choicag, of
success rates are unavoidable, then a possible factor of 2 tHatEg. (6.8) wheng=3, 4, 5, and 6. Recall that the probability of
may be available from the choice of target string could besuccess is invariant under string reversal, i.@, (v.q)
invaluable. Fig. {c) shows the result of numerical evaluation =pa_,_(¥.0).

of the relative spread obtained from E@8.2) and(6.4) for

the case whemw=1.00001.

Equation(6.4) also provides information about how the )
correlation spread changes as the crisis is approached. AsbY the g-block A,=(.0...010...0), wherew is the
tends to unity, it can be shown that the peak in the spread diumber of zeros to theight of the digit “1’, contains one,
values ofp, (v,r) essentially maintains its height and width and only one, of the periogoints. It is therefore a possible

while the maximum given by Eq6.5 moves monotonicall choice of target interval in a single-component experiment.
S . 9 y ' -ally Equation(2.15 can be used to obtain the generating function
to infinity. In this way, the range of values offor which

pAi(v,r) is close to unity(and the relative spread is close to GAw(Z) .f_o_r eachw=0,1,... 4~ 1_,land the correspo_ndlng
zerg expands untip, (1,r)=1 for anyA, [cf. Eq.(6.2) with probabilitiespy, (v,q) =Ga,((2) %) compared for differ-
2=1] ' ent values ofw. o ' .
2k Each generating function is determined by the correlation
coefficients ofA,, and these indicator functions are invariant
under reversal of the binary string defining the code block.
Thus the correlation coefficients féx, are the same as those
In a single-component experiment, in which the length ofy jts reversaIKW=Aq_1_W, so thatGp (2)=Ga_, (2).
the target interval is fixed, there aggossible candidates for It follows that it is sufficient to obv{ainG (;) fc;vr W
. X . A
the target interval. It is clear that the numbers of preimages . i
contributing to control occurring in exactly iterations is = 0.1, ... W, where
determined by the correlation coefficients of the target code
block and, therefore, these numbers can vary from one target
interval to another. How does the probability of successful W* =
control depend on which of these intervals is chosen? (q—1)/2 if g is odd.
Consider the period-orbit represented by the indefinite
repetition of the string @. . . 01(of lengthq) and each of its  Equation(2.15), together with Eqs(2.14) and (2.2) (with i
g—1 distinct cyclic permutations. The interval represented=j), gives

B. Target interval dependence within an orbit

g/2—1 if gis even
(6.7)

291-2z+2% 1 for w=0

G (2)=Ga__ . (D)= 1+§ s (6.9
s=1

q—1+w

-1
+qu forw=1,... w*.

zq[(l—Zz)
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Since the probability of successful contrgds (v,0) C. Target length dependence for a given orbit

=Gy, ((2v)7h), Eq. (6.8 shows that only forv=1 are all The form of ther dependence of the probability of suc-
choices of target interval equally likely to achieve control cessful control to any choice of target block, and how it
in the single-component experiment. Although all changes as the crisis is approached, was discussed in Sec. VI
choices for target interval have the same length, the correld?- Similar behavior is to be expected for control to a par-
tions, which describe the “first-entry” property, affect the ficular periodg orbit (q>1) when a single-component target
preimage numbers differently for each value of IS USed. _ _ o
=0,1,... w*. The results obtained by using E€.8) to Consider the period-point represented by the indefinite

. : repetition of string 0 . . . 01with g digits and focus attention
caIcuIatepAW(v,q) for some trial values of andq are given on the target interval represented Ay=(.0...01),. This

in Fig. 2. It can be seen that measurable differences _in SUGs gne ofq choices of target with length ¢2 9 that exhibits
cess rates are to be expected. However, for the rangemf  symnglically one period of this periogiorbit. Symbolic rep-
Fig. 2, these differences are not sufficiently large for a sigyesentatives of smaller intervals that contain the same peri-

nificant advantage to be gained by choosing one target ovejgic point can be obtained by extracting longer blocks from
another. Moreover, the spread of values over the orbit diminthe symbolic representation of the periodic orbit. For ex-

ishes agy increases. It should be noted that the more rapicample, Ag,,=(.0...0D...0).,, with w=12,...,
overall decline with increasing exhibited in Fig. 2 for gq—1 zeros to the right of the digit ‘1’, followed by,

higher g values is a result of the larger value 0fn those  =(.0...010...01),, and so on. The general form for the
cases. Recall that the length of the target is’)(Z, with  generating function associated with a typical member of this
r=qg. sequence of code blocks is
|
M -1
z’[(l—Zz) > zm=al g for w=0
m=1
GAr(Z) = (69)

M w—1 -1
Zr[(l—ZZ) > zm-bay B Mar +zf] forw=1,...9-1,
m=1 =0

wherer =Mq+w is the length of the block, wittv a posi-  function of increasing [i.e., target length (2) " decreas-

tive integer andv=0,1, ... g—1. ing] using Eq.(6.9) show that forv>1, this number reaches
Equation(6.9) gives the probability of successful control a finite limit, which increases astends to 1; while, for=1,

pa (v,r)=Gu ((2v) 1) for the sequence of target intervals it increases indefinitely. Sample results are shown in Fig. 4.

represented by the strinds,q+.. Some special cases are of 0.18 -
interest. Ifq=1, thenM=r andw=0, so that only the first
equation in(6.9) is required and the fixed point result df]
is recovered. Note that this generating function is equal to 0.14 |
G{")(2) given in Eq.(6.2 for each value of. For eachq
>1, the lowest value of in Eq. (6.9 isq(M=1w=0) and
the resulting generating function corresponds G@qﬂ(z)
given in Eq.(6.2). If g is increased to a value significantly
greater than 1, then, far=(2») !, only the term withm

=1 makes a numerically detectable contribution to the
square brackets in E@6.9) for any value ofw. As a conse-
quence, forg large enoughp, (v,r)~G{j} ((2»)~?) for all 004 4
r. This behavior is confirmed numerically in Fig. 3 for
r=1.00001.

0.16 -

0.12

0.1 4

0.08 4

Gar @) - G 112

0.06 4

0.02 4

30

FIG. 3. lllustration of the relationship betwe@yjz) given by
Eq. (6.9 and the limiting single-component generating functions of
Eq. (6.2. Ther dependence oGAr(z), relative to the lower limit
The (v,r) dependence of the average number of timeG()(z), is shown for a fixed value af=1/(2v), with v=1.000 01.
steps before activation of the control to a perpdeg>1) Each graph corresponds to a single valugefl,2,3,4,5. Observe
orbit is qualitatively similar to that for the fixed point target that ther dependence 0B, (z) approaches that of the upper limit
reported in[1]. For example, calculations afAr(v,r) as a G{(2) asqincreases.

D. Average number of iterations to control when it occurs
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61 Eq. (2.195 gives the generating function for the numbers of
its preimages as

Ga(2)=7"Ga(2)={(1-22)Cx (1) + 2} * (6.10

5 [+l ]
naannnn

95 and the specialization of Eq5.3) referred to in Sec. V B
C yields
-sz’Ai(z)

Ga(z
- Ai() z=(2v)"1

TAi(V!r):

log, (7.4r(vr)

: | 2[2CA(2)~(1-22)Cx (2)—12" 1]
5 _ [(1-22)Ca(2)+2] o X

g (6.11)

0 Sincez=(2v) 1'=2"1(1-6)<271, the termgz' ! andz
* decrease in magnitude rapidly mBicreases and, when>1,
0 : . , . . \ they can be neglected folarge enough. Thus E¢6.11) can
0 5 10 15 20 25 30 be approximated by

@

TAi(Vir)%

z[chi<z>—(1—22>c,&i<z>]]
1-20C,@ | .,

z CAi (2)
CAi (2)

)

8 | ) _1—6

(6.12

Z:(ZV)’1

It can be shown that the minimufmaximum magnitude of
the correlation dependent term in E®.12 is attained for
the extreme polynomiaCqy(z) [C4(2)] given in Eq.(6.1),
with the result that this term is bounded below by zero and
above by(1-6)/(1+ 6). Finally, it can be concluded that, for
v>1,

i
i
i

log, (7.4:(vsr))

1-6\1 | 1-6 6.1
1+53\|mTA(Vr) 5 (6.13

r—om

¢ O p & O
MR- RN RN e g o]

LI | | N |
[ OV N

Observe that both upper and lower bounds to the limiting
value of 7 converge to 14 as 6—0.

Whenv=1, the termsz' ! andz" in Eq.(6.11) cannot be
neglected, becauseis then equal té; and the factor of (1
—22)=0. In this case

0 S 10 15 20 25 30
r
® Ta (L) = " ] =2'Cp(3)-T,
FIG. 4. Diagram illustrating the dependence of the average z=271 6.1
number of iterations to control for the perigderbits and single- (6.14

component targets of the type discussed in Sec. VI C. Examples of
numerical results obtained by using E@.9) to computer, (v,r) and, when 2>, it follows that

as a function off =Mq-+w for (a) »=1.00001 andb) »=1 are
presented. In both cases data are plottedyferl,2,3,4, and 5. log; of TAi(er)]:r|0910(2)+|0910[CAi(%)]- (6.15

The weakq dependence of the variation o; (v,r) with
r shown in Fig. 4 can be reconciled with the correlationEquation(6.15 shows that a plot of log 74 (v.r)] againstr
polynomial limits introduced in Sec. VI A. For any single- is asymptotically a straight line of slope equal to4¢8) and
component experiment target represented by the s#king intercept bounded by

2{2Cp(2)—r2" 71}
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0:|0910[Co(%)]$|0910[CAi(%)]<|0910[C1(%)]: l0g;(2). However, it is known thaS(H(3))= H,_q(%)z 1, so that Eq.
(6.16 (7.3 yields H(3)=v(3)Y(3) where Y(3)=C(3) J and

1y= 1y)-1
This behavior is consistent with the numerical results giveny(z) S(Y(Z)_)_ '(.) . ) .
in Fig. 4(b), where the limiting straight lines given by Eqs.  The quant|t|est-|LJq(§), forj=1,... g, are the probabili-

(6.15 and(6.16 are shown. ties of first entry into the target unidn, atA;. The follow-
ing example shows that these probabilities depend Gon-
VIl. DISCUSSION—MULTIPLE-COMPONENT TARGETS sider control to the period-3 orbit represented by indefinite

_ _ o _ . repetition of the string 001 using the target unidn
The aim of this section is to provide an overview of the ={A;,A;,As}, where A;=(001001), A,=(010010), and
properties of multiple-component targets and to compare,,=(100100). The correlation polynomials for these target
them with those of their single-component counterparts.  component strings can be obtained from Ej6), by using

Eq.(2.2), and the correlation matri€(3) constructed. Solu-

A. Qualitative properties of generating functions tion of Eq. (7.3 then gives
1.v>1
The equations(2.7) and (2.8) defining the generating H(Ll)(l)zo_326037,
functions associated with the individual components of the 312

target union can be used to show that their stﬁnm(z) takes
a form similar to that ofG, (z) given in Eq.(2.15. The

result of substituting Eq2.8) into Eq.(2.7) can be written in
the matrix form

(1
HE?)| 5| =0.331797, (7.4

1-S(H(2))

1
G| =
C(Z)H(Z):Zr[ﬁ]\]=y(2)\], (7.0 HLS( )_0-342 166,

3\2

whereH(z)=[H,(_1)~ » H(Lq)]T, J=[1---1]T are @X 1) vec- to six decimal places. The differences recorded in E®)

9 Do are not large, but they show that the effect of different cor-
tors,  S(H(2)=2j_H[ (2=H_(2), and C(2)  (elations between the strings representing the components of
=[Cij(2)];_1. Given thatC(z) is nonsingular, Eq(7.1)  the target is to create an asymmetry between the probabilities
implies of first entry at the individual components of the target

union.
;

(7.2

HL (2)=S(H(2))= = ,
g {(1-22)S(Y(2)) *+2'} B. Numerical evaluation of generating functions

_ - ; _ titative results can be obtained directly from Egs.
where Y(z)=C(z) 3. In the special caseq=1, Quan tall :
S(Y(2))"'=C,(2) and Eq.(2.15 is recovered explicitly (2._7) and (2._8)_ for_any chosen_ periodic orbit and rilrlly target
i union containing it. For a particular value of (2v) ~*, Eq.
: ) i 2.7) provides a set of linear equations for the unknown val-
exists and the sum of its elemeritee product withJ forms (2.7 provi ! quat » wn v

(i) -1 =
row sums and the functio sums theseis not equal to zero ues H'-q((zv) ) i=1. Q (cf. Sec. VIl A 2, w.h.ere_ .
for z=(2v) 1=2"1(1-6), with small §=0, Eq. (7.2) v=1). However, to examine the approach to the crisis it is

shows that the qualitative behavior of the probability thatMOré convenient to use one of the many computer algebra
control will occur is the same as that for the single- SOftware packagesuch asvATHEMATICA Or MAPLE) to ob-

component target. Moreover, it also follows that, under thd@n the rational functions of that satisfy Eq.(2.7) and to

same conditions, this statement will be true of the averagé'mp_ly evaluate these forms for whatever valueszadre

number of iterations to control when it occus. Sec. VI ). required. Knowledge of the numerator and denominator
polynomials of the rational generating functubh_q(z) al-

2. v=1 lows Eqg.(5.3 to be used to compute the average number of

This case corresponds = !, when Eqs(2.7) and (2.8) |te(at|ons to contrpl(when it occur$ for the chose_n target
union. By way of illustration, the generating functions asso-

give Hy (3)=1. However, the numbeis(j,m), and there-  gjated with control to the period-3 orbit considered in Sec.
fore H{J;(%):z;‘;zoh( j,m)2-™, are still well defined foj VIl A 2 are presented here. N
=1,... 4, provided that the summation converges. Values For the target unionls={A;,A;Ag}, the coefficient

()1 i polynomialsa;(z) in Eq.(2.7) can be derived from the cor-
for H,_‘q(z) can be extracted from E7.1) by assuming that  o3tion polynomials given by Eq$2.6) and (2.2). The so-

thez derivativeD,H, (3)#0 and taking the limi$—0. The  lution of Eq. (2.7) usingMATHEMATICA 4.0 is
result is

from Eq. (7.2). Thus, provided the inverse matri®(z) *

(1-z+22-*-%+2"-2%

HE(2)= 3
_ 3 1-2z+23-272+ 25— 24+ 2"+ 8- 22+ 719+ 2%
C(:)H(3)=2"""UDH (3)I=7(3)J. (7.3 (7.5
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~log, ,(£) -log, ,(£)
®) FIG. 6. Comparison of the average number of iterations to con-
ols trol for the period-3 orbit usinga) the target uniori; and(b) the
' Ty target intervalA; as a function of the distance from the crisis mea-
T o1 —o—j=2 sured by the negative, base-10 logarithmeefv—1.
< 0.05
' values near zero fof@) v significantly different from 1, and
04 . . 2 o o , (b) v tending to 1. The trend ife) comes from the reduction
0 1 2 3 4 5 6 7 in all preimage lengths that occurs whemcreases, with the
-log, (5) result that the probability of successful control falls to zero

©

FIG. 5. Plots showinga) the probability of first entry into the
target unionL;={A,A,,A3} at each of its three disjoint compo-
nents,(b) the probability of successful control usihg in relation

in both types of experiment. The behavior () follows
because the probability of successful control tends to unity in
both multiple- and single-component experiments v aap-
proaches 1.

Figure 5 suggests that there is little advantage to using a

to the corresponding probabilities for single-component targetgnultiple-component target, particularly in the immediate vi-

A1,Az,A;g, (0) the advantaged;(v)=H L3(z) - GAj(z), z=1/(2v),

cinity of the crisis. For such values ofboth multiple- and

gained by the multiple-component target over its single-componengingle-component experiments succeed in reaching their tar-

counterparts, as functions efv—1.

B(1-z+2-7%

H(LZ)(Z): 3 4. 56, 571 58_59, 510, 513
3 1-2z2+72°-22"+72°—-2°+2'+2°~-72°+72"+2
(7.6)
e B(1-z+2-#+25-5+8-2°)
z)= )
L O S I s P2+ =4 7+ =2+ 20+

(7.7

The numerator and denominator polynomials in Egs5)—
(7.7) are relatively prime and all three share the same de
nominator. Forv=1, the values oﬂ-|(,_"q)(%), for j=1,2,3,
obtained from Eq<(7.5—(7.7) with z= 3, are precisely those
given in Eq.(7.4). Figure %a) shows plots oH(L‘c:((Zv)‘l),
j=1,2,3, for some trial values of>1. It can be seen that all
three quantities fall toward zero asincreases. The corre-
sponding values of the probabili;qu(v,r)zHLq((Zv)*l),
obtained by summing ovgr are shown in Fig. &) together
with data obtained when each of the intervals of the targe
union is used as a single-component target. Figicedom-

pares the multiple- and single-component target results bh
showing thev dependence of the “advantage” of the former v

over the latter. The advantage passes through a maximu
value approximately equal to 0.14 fer<1.02 and falls to

gets with probability close to 1, but the average number of
iterations to control(when control occupscan be signifi-
cantly smaller when a multiple-component target is used.

Equations(7.5—(7.7) can be used to obtaiH L,(2) [cf. Eq.

(5.1)] for the period-3 orbit to which they refer. Equation
(5.3) then allows the average number of iterations to control,
TLB(V,G), for that orbit to be calculated. The corresponding

single-component quantitiesAi(v,G), i=1,2,3, can be ob-
tained using the correlation polynomials given by E2j14)

in conjunction with Eqs(6.10 and(6.11). Computed values
of T|_3(V,6) andTAl(v,G) are compared in Fig. 6. The values

of TAi(V,6) do not depend strongly dnand, indeed, are the

same fori=1 and 3. It can be seen that, fernear 1, the
multiple-component target leads to a significant improve-
ment in the average waiting time to control in this example.

C. Application of recurrence relations

The generating functions discussed in Sec.VIlI A provide
the probability of successful control, and the average number
of iterations to control, in the limit of arbitrarily large num-
ers of iterations. The analysis of Sec. IV provides explicit
alues for the numbers of first-entry preimages of finite order
and this can be used to compare the effectiveness of
multiple- and single-component targets for finite numbers of
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TABLE Il. Comparison of first-entry preimages given by Eq.

(7.9 with their single-component counterparts for selected values

of the orderk.

k NO(L)  NOA)  NOA) A/l (%) AylLg (%)
0 3 1 1 33.33 33.33
1 3 2 2 66.67 66.67
2 6 4 4 66.67 66.67
3 12 7 7 58.33 58.33
4 24 14 14 58.33 58.33
5 46 28 27 60.87 58.70
6 90 56 54 62.22 60.00
7 175 110 106 62.86 60.57
8 341 216 210 63.34 61.58
9 664 425 413 64.01 62.20
10 1293 838 815 64.81 63.03
20 1015143 738864 721171 72.28 71.04
30 796960021 651164399 638552724 81.71 80.12

iterations. The example of control to a period-3 orbit, intro-

C. M. PLACE AND D.

K. ARROWSMITH PRE 61

0.25 -

Aa(v,n)

FIG. 7. Numerical results showing how thredependence of
A,(v,n) changes ag increases above 1. For the valuesafsed in
this diagram, the limiting values of the multiple-component advan-
tage as tends to infinity are given in Fig.(6).

duced in Sec.VIl A, can be used to illustrate the results of

calculations of this kind.

The correlation coefficients for the stringsA;

=0,1,... and=1,2,3. Table Il contains such comparative
data for some selected values kf Note that N{®(A;)

=(001001),A,=(010010), andf\3=(100100)_ are given by INﬁG)(Al) (becauseASZKl) while N(k6)(A2) is slightly
Eq. (2.2), and the numbers of first-entry preimages for eachsmajler (because the self-correlation coefficients Af are

of the components of the target uniba={A;,A,,A3} are
obtained by substituting them into E(4.2). For example,
wheni=1, Eq.(4.2) gives

hL3(1,m+ 1)= 2hL3(1,m) — hL3(1,m— 2)+ 2hL3(1,m— 3)
- h|_3(1,m— 5)— h|_3(2,m— 1)+ 2h,_3(2,m
~2)—h(2m—4)+h_(2m-5)
—h_(3m)+2h_(3m—1)—h_(3m-3)

+h, (3m—4)+h (3m-5) (7.9

for m=k+r=6. Observe that the right-hand side of Eqg.
(7.8) includes numbers, (j,m—s) with j=2 and 3 in ad-

dition to those withj=i=1. Such “cross-correlation terms”

different from those ofA; and Aj). Although N{®(L5)
dominatesN(®)(A;), particularly at lowk, the growth rates of
the recurrence relations are different and both sequences of
numbers have the property that their sums, when weighted
with the v=1 preimage lengths of Z¥*8) are unity. More
generally, the partial sum@o n termg of both sequences,
when weighted with the>>1 pre-image lengths (@ ~*9),

give the probabilitie$L3(v,6;n) and pAi(v,G;n) of success-

ful control in less than or equal to iterations. The advan-
tage, A;(v,n), of the multiple-component target over the
single-component target can then be defined by

Ai(v,n)=p (v,6;n) = pa (v,6;n)

=3 INEA(Lo) - N(A)](20) ()

do not appear in the recurrence relations associated with

single-component targets but are a feature of the multiple-

component case. Initial conditions for the use of E48),
and the equations arising from E@t.2) wheni=2 and 3,
are hLS(i,m)=O, m=1,...,5, hLa(i,6)=1, i=1,2,3. Of

course, the quantity of interest in the multiple-componen

experiment is the sum overof the number of preimages
corresponding to first-entry at componentof the target
union, i.e.,

3

NE<6)(|_3)=21 h,(i,k+6), (7.9

for k=0,1, . ... Moreover, it is this number that is to be

t

(7.10

In the limit n— o0, the summation in Eq7.10 converges to
the limiting advantages shown in Fig(ch. The form of then
dependence of4;(v,n) changes significantly as ap-
proaches unity from abovésee Fig. 7. The weaki depen-
dence ofA;(v,n) is not important here and attention is fo-
cused on the single-component data for. For v=1, the
advantage associated with the multiple-component target
passes through a well-defined maximum of about 0.22 when
n is approximately 50. A increases above 1, the height of
this maximum declines and its definition deteriorates until,
for v=1.05, only a “shoulder” remains and the advantage of
the multiple-component target is essentially constantnfor

compared with the single-component counterparts obtained-50. The number differences in E(..10 are independent

by substituting the diagondbr “self-") correlation coeffi-
cients into Eq.(4.3 to obtain N(ke)(Ai)=gAi(k+6), for k

of v and therefore the behavior shown in Fig. 7 reflects a
shift in weight away from the lower values kfin Eq. (7.10
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as v increases. Thus significant gains in probability of suc-study of the design of numerical experiments that can act as
cessful control to a nontrivial periodic orbit can be achieveda valuable guide to dealing with models where exact solu-
by using a multiple-component target provideds suffi-  tions are not available and statistical experiments provide the
ciently close to unity. Moreover, in the present example,0nly feasible approach. This aspect of the work presented in

such gains occur at relatively small numbers of iterations. [1] has been discussed |ii]. Here it has been illustrated by
comparing the properties of experiments of typ@sand(b).

VIIl. CONCLUSION The absence of cross correlations between diffgrent compo-
nents of the target union means that the analysis based on a
The combinatorial techniques used[i to treat the sta- single target interval is better suited to questions involving a
tistics of OGY control to the nontrivial fixed point of tran- range of values ofj or r. In such cases, generating functions
siently chaotic tent maps have been extended to peyiod-are easily obtained without recourse to computer algebra,
orbits with g>1. Two types of statistical experiment have and recurrence relations can be iterated within a single row
been analyzeda) multiple-component experiments in which or column of an array. The examples considered indicate that
the periodic orbit is accessed through a target consisting ahe qualitative behavior of the probability of control, and the
the union ofq disjoint intervals each containing one of the number of iterations to control, are the same for both types
periodic points; andb) single-component experiments in of target, and that quantitative differences arising from cor-
which a single interval containing any one of the periodicrelation effects are of secondary importance for single-
points is targeted. As ifiL], the aim is to count the numbers component targets. However, significant gains in both the
of first-entry preimages of the symbolically defined targetpractical success rate and the number of iterations to control
interval or union. Given the binary strifg) defining the tar- can be achieved by using the multiple-component target
get, a closed form can be obtained for the generating funowhen the operational conditions are sufficiently close to the
tion for the required preimage numbers, which, in turn,crisis.
yields the probability of control taking place and the average It is important to note that combinatorial aspects of the
number of iterations to control when it occurs. Recurrencesymbolic analysis presented above are determined solely by
relations for the numbers of first-entry preimages of the tarthe symbolic dynamics of the system at the crisis. Conse-
get allow calculation of the probability of control occurring quently, the preimage numbers obtained at a given order are
in less than or equal to a chosen number of iterations. Thequally valid for maps other than the tent map that have the
results for experiments of typ&) are complicated by the same symbolic representation. The difficulty in using these
appearance of cross correlations between the strings repreesults to obtain information about such maps is that, in gen-
senting the different components of the target union. eral, the preimage lengths are then not the same for all pre-
The tent map itselfv=1) is a prototype of chaotic behav- images of a given order. The simple transition from first-
ior and the crisis of its chaotic attractor that occurs in theentry, orderk preimage numbers to a probability density at
family of tent maps(v=1) studied here is representative of orderk by multiplying by the preimage length is no longer
the behavior of other families of unimodal maps. The sym-valid. However, the symbolic approach clearly admits an ex-
bolic approach to the application of the OGY strategy toact treatment of the “first-entry” aspect of the application of
transiently chaotic tent maps allows an exact treatment othe OGY strategy to unimodal maps near crisis, and work on
control to nontrivial periodic orbits to be developed for this the translation of this information into statistical parameters
important paradigm. The results obtained allow a formalfor more general unimodal maps continues.
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